DOI QR코드

DOI QR Code

Preparation and characterization of La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ electrolyte using glycine-nitrate process

Glycine nitrate process로 합성된 La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ 전해질의 제조 및 특성평가

  • Ok, Kyung-Min (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Kyeong-Lok (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Tae-Wan (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science Engineering, Pusan National University) ;
  • Park, Hee-Dae (Department of Electrical and Electronic Engineering, Kyungsung University) ;
  • Sung, Youl-Moon (Department of Electrical and Electronic Engineering, Kyungsung University) ;
  • Park, Hong-Chae (School of Materials Science Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science Engineering, Pusan National University)
  • Received : 2012.11.29
  • Accepted : 2013.01.04
  • Published : 2013.02.28

Abstract

Conductivity of LSGMC materials were affected by secondary phase segregation, composition and synthetic route. $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$ (LSGMC) powders were prepared using the glycine nitrate process to produce high surface area and compositionally homogeneous powders. The powders were synthesized with different 0.5, 1, 1.5, 2, 2.5 of glycine/cation molar ratios. A single perovskite phase from the synthesized powders was characterized with X-ray diffraction patterns. The obtained sintered pellets showed the dense grain microstructure. In case of 1.5 molar ratio, its density was higher than the others. The electrical conductivity measured at $800^{\circ}C$ was observed to be 0.131 $Scm^{-1}$. In addition, the linear thermal expansion behavior was indicated between $25^{\circ}C$ and $800^{\circ}C$.

이차상의 편석, 분말의 조성 및 합성방법은 $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$(LSGMC) 물질의 전도도에 영향을 미친다. 조성이 균일하고 순도가 높은 분말을 얻기 위해 GNP(Glycine nitrate process)를 이용하여 고체산화물 연료전지의 전해질재료인 $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$를 합성하였다. 자발연소반응 시, 글리신의 양에 따른 물질의 특성을 확인하기 위하여, 글리신/양이온 비를 0.5, 1, 1.5, 2, 2.5로 변화시켜 분말을 합성하였다. 합성된 분말의 단상의 perovskite상 동정 및 소결체의 미세구조 변화를 XRD와 SEM을 이용하여 분석하였다. 조성비가 1.5인 경우, 상대적으로 치밀하며, $800^{\circ}C$에서 0.131 $Scm^{-1}$의 우수한 전기전도특성을 나타냈다. 또한, $25{\sim}800^{\circ}C$ 사이의 온도에서 열팽창거동이 선형을 나타내었다.

Keywords

References

  1. P. Singh and N.Q. Minh, "Solid oxide fuel cells: Technology status", Int J. Appl. Ceram. Technol. 1 (2004) 5.
  2. R.M. Ormerod, "Solid oxide fuel cells", Chemical Society Reviews 32 (2002) 17.
  3. G.J.K. Acres, "Recent advances in fuel cell technology and its applications", Journal of Power Source 100 (2001) 60. https://doi.org/10.1016/S0378-7753(01)00883-7
  4. T. Ishihara, M. Honda and Y. Takira, "Doped $LaGaO_3$ perovskite type oxide as a new oxide ionic conductor", J. Am. Chem. Soc. 116 (1994) 3801. https://doi.org/10.1021/ja00088a016
  5. T. Ishihara, T. Akbay, H. Furutani and Y. Takita, "Simultanceous generation of synthesis gas and electric power by internal reforming fuel cells utilizing $LaGaO_3$ based electrolytes", Solid State Ionics 113 (1998) 253. https://doi.org/10.1016/S0167-2738(98)00289-6
  6. T. Ishihara, H. Furutani, M. Honda, T. Yamada, T. Shibayama, T. Akbay, N. Sakai, H. Yokokawa and Y. Takita, "Improved oxide ion conductivity in $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3$ by Doping Co", Chem. Mater. 11 (1999) 2081. https://doi.org/10.1021/cm981145w
  7. J.W. Stevenson, T.R. Amstrong, D.E. McCready, L.R. Pederson and W.J. Weber, "Processing and electrical properties of alkaline earth-doped lanthanum gallate", J. Electrochem. Soc. 114 (1997) 3613.
  8. S.P.S. Badwal and J. Drennan, "Microstructure/conductivity relationship in the scandia-zirconia system", Solid State Ionics 53 (1992) 769. https://doi.org/10.1016/0167-2738(92)90253-L
  9. J. Xue, Y. Shen, Q. Zhou, T. He and Y. Han, "Combustion synthesis and properties of highly phase-pure perovskite electrolyte Co-doped $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}$ for IT-SOFCs", Int. J. Hydrogen Energy 35 (2010) 294. https://doi.org/10.1016/j.ijhydene.2009.10.087
  10. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G.J. Exarhos, "Glycine-nitrate combustion synthesis of oxide ceramic powders", Mater. Lett. 10 (1990) 6. https://doi.org/10.1016/0167-577X(90)90003-5
  11. B. Liu and Y. Zhang, "$La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-{\delta}}$ sintered by spark plasma sintering (SPS) for intermediate temperature SOFC electrolyte", J. Alloys Compd. 458 (2008) 383. https://doi.org/10.1016/j.jallcom.2007.03.126
  12. E. Djurado and M. Labeu, "Second phases in doped lanthanum gallate perovskites", J. Eur. Ceram. Soc. 18 (1998) 1397. https://doi.org/10.1016/S0955-2219(98)00016-8
  13. M. Rozumek, P. Majewski, H. Schluckwerder, F. Aldinger, K. Kunstler and G. Tomandl, "Electrical conduction behavior of $La_{1+x}Sr_{1-x}Ga_3O_{7-{\delta}}$ melilite-type ceramics", J. Am. Ceram. Soc. 87 (2004) 1795. https://doi.org/10.1111/j.1551-2916.2004.01795.x
  14. D. Lee and J.-H. Han, "Characterization of Co-doped LSGM electrolyte prepared by GNP for IT-SOFC", J. Electrochem. Soc. 25 (2011) 1717.
  15. K. Huang, R.S. Tichy and J.B. Goodenough, "Superior perovskite oxide-ion conductor; strontium- and magnesium- doped $LaGaO_3$", II. ac Impedance spectroscopy. J. Am. Ceram. Soc. 81 (1998) 2576.
  16. S. Mafe, J.A. Manzanares and P. Ramirez, "Modeling of surface vs. bulk ionic conductivity in fixed charge membranes", Phys. Chem. Chem. Phys. 5 (2003) 376. https://doi.org/10.1039/b209438j
  17. R. Peng, C. Xia, Q. Fu, G. Meng and D. Peng, "Sintering and electrical properties of (CeO_2)_{0.8}(Sm_2O_3)_{0.1}$ powders prepared by glycine-nitrate process", Mater. Lett. 56 (2002) 1043. https://doi.org/10.1016/S0167-577X(02)00673-0
  18. J. Lambert Bates, L.A. Chick and W.J. Weber, "Synthesis, air sintering and properties of lanthanum and yttrium chromites and manganites", Solid State Ionics 52 (1992) 235. https://doi.org/10.1016/0167-2738(92)90110-B
  19. A. Dutta, J. Mukhopadhyay and R.N. Basu, "Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells", J. Eur. Ceram. Soc. 29 (2009) 2003. https://doi.org/10.1016/j.jeurceramsoc.2008.11.011
  20. K.T. Jacob, S. Jain, V.S. Saji and P.V.K. Srikanth, "Thermal expansion of doped lanthanum gallates", Bull. Mater. Sci. 33 (2010) 407. https://doi.org/10.1007/s12034-010-0062-4
  21. T.M. Noh, J. Ryu, J. Kim, C. Jeong and H. Lee, "Structural analysis and thermal expansion property of Cu doped LSM for SOFCs", Journal of the Korean Crystal Growth and Crystal Technology 4 (2011) 175.
  22. J. Ryu, T. Noh, J. Kim and H. Lee, "Structural change and electrical conductivity according to Sr content in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$)", Journal of the Korean Crystal Growth and Crystal Technology 22 (2012) 78. https://doi.org/10.6111/JKCGCT.2012.22.2.078
  23. M. Mori, N.M. Sammes, "Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method", Solid State Ionics 146 (2002) 301. https://doi.org/10.1016/S0167-2738(01)01020-7

Cited by

  1. powders by precipitation method vol.24, pp.1, 2014, https://doi.org/10.6111/JKCGCT.2014.24.1.008