DOI QR코드

DOI QR Code

Magnetorheology of Xanthan-gum-coated Soft Magnetic Carbonyl Iron Microspheres and Their Polishing Characteristics

  • Received : 2012.05.31
  • Accepted : 2012.09.14
  • Published : 2013.06.28

Abstract

Magnetorheological (MR) fluids are colloidal suspensions of soft magnetic particles dispersed in a non-magnetic liquid. Among their applications, MR polishing has attracted considerable attention owing to its smart control of the polishing characteristics for dedicated microelectromechanical system applications. To improve the polishing characteristics of MR fluids, we fabricated carbonyl iron (CI) microspheres coated with xanthan gum (XG) by using a solvent casting method. The morphologies and densities of both pure CI and CI/XG particles were characterized using a scanning electron microscope and a pycnometer, respectively. In addition, the rheological characteristics of the MR fluids under various applied magnetic field strengths were examined using a rotational rheometer. The MR polishing characteristics were conducted using an MR polishing machine to examine the surface roughness and the material removal by MR polishing with added nano-ceria slurry abrasives.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. D. York, X. J. Wang and F. Gordaninejad, J. Vib. Acoust. Trans. ASME 133, 031003 (2011). https://doi.org/10.1115/1.4002840
  2. J. M. Ginder, L. C. Davis and L. D. Elie, Int. J. Mod. Phys. B 10, 3293 (1996). https://doi.org/10.1142/S0217979296001744
  3. J. D. Carlson and M. R. Jolly, Mechatronics 10, 555 (2000). https://doi.org/10.1016/S0957-4158(99)00064-1
  4. B. J. Park, F. F. Fang and H. J. Choi, Soft Matter 6, 5246 (2010). https://doi.org/10.1039/c0sm00014k
  5. J. de Vicente, D. J. Klingenberg and R. Hidalgo-Alvarez, Soft Matter 7, 3701 (2011). https://doi.org/10.1039/c0sm01221a
  6. H. B. Cheng, J. M. Wang, Q. J. Zhang and N. M. Wereley, Smart Mater. Struct. 18, 085009 (2009). https://doi.org/10.1088/0964-1726/18/8/085009
  7. H. J. Choi, Y. H. Lee, C. A. Kim and M. S. Jhon, J. Mater. Sci. Lett. 19, 533 (2000). https://doi.org/10.1023/A:1006718107735
  8. P. J. Rankin, A. T. Horvath and D. J. Klingenberg, Rheol. Acta. 378, 471 (1999).
  9. M. R. Jolly, J. W. Bender and J. D. Carlson, J. Intell. Mater. Syst. Struct. 10, 5 (1999).
  10. W. I. Kordonski and S. D. Jacobs, Int. J. Mod. Phys. B 10, 2837 (1996). https://doi.org/10.1142/S0217979296001288
  11. A. Sidpara and V. K. Jain, Int. J. Adv. Manuf. Technol. 55, 243 (2011). https://doi.org/10.1007/s00170-010-3032-5
  12. J. A. Menapace and P. R. Ehrmann, US20110275286A1 (2011).
  13. W. Kordonski and S. Gorodkin, Appl. Optics 50, 1984 (2011). https://doi.org/10.1364/AO.50.001984
  14. Y. Akagami and N. Umehara, Wear 260, 345 (2006). https://doi.org/10.1016/j.wear.2005.04.027
  15. C. Miao, R. Shen, M. Wang, S. N. Shafrir, H. Yang and S. D. Jacobs, J. Amer. Ceram. Soc. 94, 2386 (2011). https://doi.org/10.1111/j.1551-2916.2011.04423.x
  16. M. Sedlacik, V. Pavlinek, P. Saha, P. Svrcinova, P. Filip and J. Stejskal, Smart Mater. Struct. 19, 115008 (2010). https://doi.org/10.1088/0964-1726/19/11/115008
  17. B. O. Park, K. H. Song, B. J. Park and H. J. Choi, J. Appl. Phys. 107, 09A506 (2010).
  18. G. T. Ngatu and N. M. Wereley, IEEE Trans. Magn. 43, 2474 (2007). https://doi.org/10.1109/TMAG.2007.893867
  19. W. H. Li, H. Du and N. Q. Guo, Mater. Sci. Eng. AStruct. Mater. Prop. Microstruct. Process 371, 9 (2004). https://doi.org/10.1016/S0921-5093(02)00932-2
  20. F. F. Fang, H. J. Choi and M. S. Jhon, Colloids Surf. A: Physicochem. Engn. Aspects 351, 46 (2009). https://doi.org/10.1016/j.colsurfa.2009.09.032
  21. J. I. Sohn, C. A. Kim, H. J. Choi and M. S. Jhon, Carbohydrate Polym. 45, 61 (2001). https://doi.org/10.1016/S0144-8617(00)00232-0
  22. S. N. Shafrir et al., Appl. Opt. 48, 6796 (2009).
  23. S. D. Jacobs, Sci. Tech. Adv. Mater. 8, 153 (2007). https://doi.org/10.1016/j.stam.2006.12.002

Cited by

  1. A Study of the Effect of Nanometer Fe3O4Addition on the Properties of Silicone Oil-based Magnetorheological Fluids vol.30, pp.2, 2015, https://doi.org/10.1080/10426914.2014.941875
  2. Effect of Surface Treated Magneto-responsible Particle on the Property of Magneto-rheological Elastomer Based on Silicone Rubber vol.51, pp.2, 2016, https://doi.org/10.7473/ec.2016.51.2.113
  3. Suspension Rheology and Magnetorheological Finishing Characteristics of Biopolymer-Coated Carbonyliron Particles vol.56, pp.9, 2013, https://doi.org/10.1021/acs.iecr.6b03790
  4. Biosynthesis of xanthangum‐coated INPs by using Xanthomonas campestris vol.12, pp.3, 2013, https://doi.org/10.1049/iet-nbt.2017.0199
  5. Influence of additives on the synthesis of carbonyl iron suspension on rheological and sedimentation properties of magnetorheological (MR) fluids vol.6, pp.8, 2013, https://doi.org/10.1088/2053-1591/ab1e03
  6. Investigation of sedimentation, rheological, and damping force characteristics of carbonyl iron magnetorheological fluid with/without additives vol.42, pp.5, 2013, https://doi.org/10.1007/s40430-020-02322-5
  7. Enhanced magnetorheological characteristics of hollow magnetite nanoparticle-carbonyl iron microsphere suspension vol.29, pp.5, 2013, https://doi.org/10.1088/1361-665x/ab7f43
  8. Magnetorheology: a review vol.16, pp.42, 2013, https://doi.org/10.1039/d0sm01082k