DOI QR코드

DOI QR Code

Supercapacitive properties of electrodeposited $RuO_2$ electrode in acrylic gel polymer electrolytes

  • Kim, Kwang Man (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Nam, Ji Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Young-Gi (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Cho, Won Il (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
  • Received : 2013.02.21
  • Accepted : 2013.06.20
  • Published : 2013.10.30

Abstract

Hydrous ruthenium oxide ($RuO_2$) is prepared by electrodeposition on a platinum substrate and its supercapacitive properties are characterized adopting acrylic gel polymer electrolytes, such as poly(-acrylic acid) (PAA), potassium polyacrylate (PAAK), and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS). The electrodeposited hydrous $RuO_2$ exhibits an amorphous compact stratified morphology with a higher loading (0.15 mg $cm^{-2}$) than that of a previous report, and shows broad redox peaks on both cathodic and anodic scans in the cyclic voltammetry. In particular, the $RuO_2$ electrode for supercapacitor adopting the PAMPS electrolyte shows the highest specific capacitance of 642 F $g^{-1}$ at 20 mV $s^{-1}$. This is due to the efficient utilization of active $RuO_2$ species and greater proton accommodation toward the negative oxygen sites of PAMPS's side chain. In addition, it is possible to improve sustainability against high-rate current with the $RuO_2$ electrode with the PAMPS electrolyte, due to the crosslinks of the gel electrolyte, which support the mechanical strength.

Keywords

References

  1. C.D. Lokhande, D.P. Dubal, O.-S. Joo, Curr. Appl. Phys. 11 (2011) 255. https://doi.org/10.1016/j.cap.2010.12.001
  2. K. Naoi, P. Simon, Interface 17 (Spring) (2008) 34.
  3. A. Cornell, D. Simonsson, J. Electrochem. Soc. 140 (1993) 3123. https://doi.org/10.1149/1.2220996
  4. J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang, J. Electrochem. Soc. 148 (2001) A1362. https://doi.org/10.1149/1.1417976
  5. I.-H. Kim, J.-H. Kim, Y.-H. Lee, K.-B. Kim, J. Electrochem. Soc. 152 (2005) A2170. https://doi.org/10.1149/1.2041147
  6. H. Wada, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, M. Morita, C. Iwakura, Electrochim. Acta 49 (2004) 4871. https://doi.org/10.1016/j.electacta.2004.05.041
  7. H. Wada, K. Yoshikawa, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura, J. Power Sources 159 (2006) 1464. https://doi.org/10.1016/j.jpowsour.2005.11.073
  8. N.A. Choudhury, A.K. Shukla, S. Sampath, S. Pitchumani, J. Electrochem. Soc. 153 (2006) A614. https://doi.org/10.1149/1.2164810
  9. H. Gao, Q. Tian, K. Lian, Solid State Ionics 181 (2010) 874. https://doi.org/10.1016/j.ssi.2010.05.006
  10. K.-T. Lee, N.-L. Wu, J. Power Sources 179 (2008) 430. https://doi.org/10.1016/j.jpowsour.2007.12.057
  11. K.-T. Lee, J.-F. Lee, N.-L. Wu, Electrochim. Acta 54 (2009) 6148. https://doi.org/10.1016/j.electacta.2009.05.065
  12. H.-S. Nam, N.-L. Wu, K.-T. Lee, K.M. Kim, C.G. Yeom, L.R. Hepowit, J.M. Ko, J.-D. Kim, J. Electrochem. Soc. 159 (2012) A899. https://doi.org/10.1149/2.112206jes
  13. J.P. Zheng, T.R. Jow, J. Electrochem. Soc. 142 (1995) L6. https://doi.org/10.1149/1.2043984
  14. J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142 (1995) 2699. https://doi.org/10.1149/1.2050077
  15. C.-C. Hu, W.-C. Chen, Electrochim. Acta 49 (2004) 3469. https://doi.org/10.1016/j.electacta.2004.03.017
  16. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, J. Phys. Chem. B 109 (2005) 7330. https://doi.org/10.1021/jp044252o

Cited by

  1. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review vol.4, pp.62, 2014, https://doi.org/10.1039/c4ra05151c
  2. Functionalization of Smart Gels with Beta-Cyclodextrin and Release Characteristics to Simulating Drugs vol.815, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/msf.815.675
  3. 레이온/폴리에틸렌옥사이드 분리막과 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터 특성 vol.18, pp.3, 2013, https://doi.org/10.5229/jkes.2015.18.3.115
  4. A review of electrolyte materials and compositions for electrochemical supercapacitors vol.44, pp.21, 2013, https://doi.org/10.1039/c5cs00303b
  5. Supercapacitive properties of activated carbon electrode in potassium-polyacrylate hydrogel electrolytes vol.46, pp.5, 2013, https://doi.org/10.1007/s10800-016-0927-3
  6. 친수성 실리카와 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터의 전기화학적 특성 vol.54, pp.3, 2013, https://doi.org/10.9713/kcer.2016.54.3.293
  7. Towards flexible solid-state supercapacitors for smart and wearable electronics vol.47, pp.6, 2013, https://doi.org/10.1039/c7cs00505a
  8. Towards establishing standard performance metrics for batteries, supercapacitors and beyond vol.48, pp.5, 2013, https://doi.org/10.1039/c8cs00581h
  9. Electrolyte selection for supercapacitive devices: a critical review vol.1, pp.10, 2019, https://doi.org/10.1039/c9na00374f
  10. Copper Cobalt Selenide as a High-Efficiency Bifunctional Electrocatalyst for Overall Water Splitting: Combined Experimental and Theoretical Study vol.3, pp.3, 2020, https://doi.org/10.1021/acsaem.0c00262
  11. High-capacity charge storage electrodes based on nickel oxide and nickel–cobalt double hydroxide nanocomposites on 3D nickel foam prepared by sparking and electrodeposition vol.841, pp.None, 2013, https://doi.org/10.1016/j.jallcom.2020.155793