DOI QR코드

DOI QR Code

$MgB_2$ coated conductors directly grown on flexible metallic Hastelloy tapes by hybrid physical-chemical vapor deposition

  • Ranot, Mahipal (BK21 Physics Division and Department of Physics, Sungkyunkwan University) ;
  • Oh, S. (Material Research Team, National Fusion Research Institute) ;
  • Chung, K.C. (Functional Nano Powder Materials Group, Korea Institute of Materials Science) ;
  • Kang, W.N. (BK21 Physics Division and Department of Physics, Sungkyunkwan University)
  • Received : 2013.04.11
  • Accepted : 2013.07.13
  • Published : 2013.10.30

Abstract

$MgB_2$ coated conductors (CCs), which can avoid the low packing density problem of powder-in-tube (PIT) processed wires, can be a realistic solution for practical engineering applications. Here we report on the superior superconducting properties of $MgB_2$ CCs grown directly on the flexible metallic Hastelloy tapes without any buffer layer at various deposition temperatures from 520 to $600^{\circ}C$ by using hybrid physical-chemical vapor deposition (HPCVD) technique. The superconducting transition temperatures ($T_c$) are in the range of 38.5-39.4 K, comparable to bulk samples and high quality thin films. Clear (101) and (002) reflection peaks of $MgB_2$ are observed in the X-ray diffraction patterns without any indication of chemical reaction between $MgB_2$ and Hastelloy tapes. From scanning electron microscopy, it was found that connection between $MgB_2$ grains and voids strongly depend on the growth temperature. A systematic increase in the flux pinning force density and thereby the critical current density with decreasing growth temperature was observed for the $MgB_2$ CCs. The critical current density ($J_c$) of Jc(5 K, 0 T) ${\sim}10^7A/cm^2$ and $J_c$(5 K, 2.5 T) ${\sim}10^5A/cm^2$ has been obtained for the sample fabricated at a low growth temperature of $520^{\circ}C$. The enhanced $J_c$ (H) behavior can be understood on the basis of the variation in the micro-structure of $MgB_2$ CCs with growth temperature.

Keywords

References

  1. W.N. Kang, H.J. Kim, E.M. Choi, C.U. Jung, S.I. Lee, Science 292 (2001) 1521. https://doi.org/10.1126/science.1060822
  2. R.M. Scanlan, et al., Proc. IEEE 79 (2004) 1639.
  3. D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, Nature (London) 414 (2001) 368. https://doi.org/10.1038/35104654
  4. R. Flukiger, H.L. Suo, N. Musolino, C. Beneduce, P. Toulemonde, P. Lezza, Phys. C 385 (2003) 286. https://doi.org/10.1016/S0921-4534(02)02307-9
  5. H. Kumakura, A. Matsumoto, T. Nakane, H. Kitaguchi, Phys. C 456 (2007) 196. https://doi.org/10.1016/j.physc.2006.12.017
  6. J.M. Rowell, Supercond. Sci. Technol. 16 (2003) R17. https://doi.org/10.1088/0953-2048/16/6/201
  7. K. Komori, K. Kawagishi, Y. Takano, H. Fujii, S. Arisawa, H. Kumakura, M. Fukutomi, K. Togano, Appl. Phys. Lett. 81 (2002) 1047. https://doi.org/10.1063/1.1495087
  8. H. Abe, K. Nishida, M. Imai, H. Kitazawa, K. Yoshii, Appl. Phys. Lett. 85 (2004) 6197. https://doi.org/10.1063/1.1839644
  9. L.-P. Chen, et al., Chin. Phys. Lett. 24 (2007) 2074. https://doi.org/10.1088/0256-307X/24/7/079
  10. C. Zhuang, D. Yao, F. Li, K. Zhang, Q. Feng, Z. Gan, Supercond. Sci. Technol. 20 (2007) 287. https://doi.org/10.1088/0953-2048/20/3/030
  11. T.G. Lee, et al., Supercond. Sci. Technol. 22 (2009) 045006. https://doi.org/10.1088/0953-2048/22/4/045006
  12. F. He, D. Xie, Q. Feng, K. Liu, Supercond. Sci. Technol. 25 (2012) 065003. https://doi.org/10.1088/0953-2048/25/6/065003
  13. M. Kiuchi, K. Yamauchi, T. Kurokawa, E.S. Otabe, T. Matsushita, M. Okada, K. Tanaka, H. Kumakura, H. Kitaguchi, Phys. C 412 (2004) 1189.
  14. M. Sugano, K. Osamura, W. Prusseir, H. Adachi, F. Kametani, IEEE Trans. Appl. Supercond. 17 (2007) 3040. https://doi.org/10.1109/TASC.2007.899393
  15. D.C. Larbalestier, et al., Nature 410 (2001) 186. https://doi.org/10.1038/35065559
  16. P. Mikheenko, E. Martinez, A. Bevan, J.S. Abell, J.L. MacManus-Driscoll, Supercond. Sci. Technol. 20 (2007) S264. https://doi.org/10.1088/0953-2048/20/9/S22
  17. J.H. Kim, R.K. Singh, N. Newman, J.M. Rowell, IEEE Trans. Appl. Supercond. 13 (2003) 3238. https://doi.org/10.1109/TASC.2003.812210
  18. X.H. Zeng, et al., Nat. Mater. 1 (2002) 35. https://doi.org/10.1038/nmat703
  19. M. Ranot, W.K. Seong, Soon-Gil Jung, W.N. Kang, J. Joo, C.eJ. Kim, B.eH. Jun, S. Oh, Chem. Vap. Deposition 18 (2012) 36. https://doi.org/10.1002/cvde.201106935
  20. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature (London) 410 (2001) 63. https://doi.org/10.1038/35065784
  21. L. Fen, T. Guo, K. Zhang, L.-P. Chen, C. Chen, Q.-R. Feng, Supercond. Sci. Technol. 19 (2006) 1196. https://doi.org/10.1088/0953-2048/19/11/018
  22. K. Masuda, T. Doi, K. Fukuyama, S. Hamada, Y. Hakuraku, H. Kitaguchi, IEEE Trans. Appl. Supercond. 17 (2007) 2895. https://doi.org/10.1109/TASC.2007.898199
  23. T.C. Shields, K. Kawano, D. Holdom, J.S. Abell, Supercond. Sci. Technol. 15 (2002) 202. https://doi.org/10.1088/0953-2048/15/2/303
  24. Q.W. Yao, X.L. Wang, S. Soltanian, A.H. Li, J. Horvat, S.X. Dou, Ceram. Int. 30 (2004) 1603. https://doi.org/10.1016/j.ceramint.2003.12.191
  25. C. Zhuang, L. An, L. Chen, L. Ding, K. Zhang, C. Chen, J. Xu, Q. Feng, Z. Gan, Front. Phys. China 2 (2006) 246.
  26. A. Gurevich, Phys. Rev. B 67 (2003) 184515. https://doi.org/10.1103/PhysRevB.67.184515
  27. V. Ferrando, et al., Appl. Phys. Lett. 87 (2005) 252509. https://doi.org/10.1063/1.2149289
  28. J.H. Kim, et al., NPG Asia Mater. 4 (2012) e3. https://doi.org/10.1038/am.2012.3

Cited by

  1. A possibility of enhancing Jc in MgB2 film grown on metallic hastelloy tape with the use of SiC buffer layer vol.16, pp.2, 2013, https://doi.org/10.9714/psac.2014.16.2.020
  2. A review on the understanding and fabrication advancement of MgB2 thin and thick films by HPCVD vol.17, pp.2, 2013, https://doi.org/10.9714/psac.2015.17.2.001
  3. Superconducting properties of SiC-buffered-MgB2 tapes vol.17, pp.3, 2013, https://doi.org/10.9714/psac.2015.17.3.001
  4. Superconducting MgB2 flowers: growth mechanism and their superconducting properties vol.29, pp.4, 2016, https://doi.org/10.1088/0953-2048/29/4/045015
  5. The Magnetic Relaxation of MgB 2 Thin Films Grown by Hybrid Physical–Chemical Vapor Deposition vol.26, pp.4, 2013, https://doi.org/10.1109/tasc.2016.2526021
  6. Tellurium addition as a solution to improve compactness of ex-situ processed MgB2-SiC superconducting tapes vol.29, pp.6, 2013, https://doi.org/10.1088/0953-2048/29/6/065012