DOI QR코드

DOI QR Code

Investigation of film-thickness dependent thermal conductivity of $Gd_2Zr_2O_7$ thin films

  • Kang, Jun-Gu (Department of Physics, Pusan National University) ;
  • Hong, K.S. (Busan Center, Korea Basic Science Institute) ;
  • Yang, Ho-Soon (Department of Physics, Pusan National University)
  • Received : 2013.03.22
  • Accepted : 2013.08.19
  • Published : 2013.11.30

Abstract

Gadolinium zirconium oxide ($Gd_2Zr_2O_7$) films, a promising candidate for thermal barrier coatings and buffer layers in superconductors, are deposited on $Al_2O_3$ substrate by using an RF-magnetron sputtering method for the study of thermal conductivity. Thermal conductivity is measured by both methods of time domain thermoreflectance and 3 omega methods, which can give rise to the difference in the heat penetration depth. Since phonon mean free path in $Gd_2Zr_2O_7$ is smaller than lattice constant due to oxygen vacancy, the film thickness variation in 100-500 nm does not affect thermal conductivity seriously unless interfacial thermal resistance is involved. The interfacial effect can be included or excluded in thermal conductivity depending on the heat penetration depth of heat waves. There is discrepancy between the experimental results of thermal conductivity obtained by the two methods, due to the effect of interfacial thermal resistance. The interfacial effect on thermal conductivity is verified through comparison of the two experimental results, and the Debye-Callaway modeling.

Keywords

References

  1. Grzegorz Moskal, Aleksandra Rozmyslowska, Adv. Mater. Res. 89-91 (2010) 739. https://doi.org/10.4028/www.scientific.net/AMR.89-91.739
  2. David G. Cahill, Kenneth Goodson, Arunava Majumdar, J. Heat Transfer 124 (2002) 223. https://doi.org/10.1115/1.1454111
  3. Fangfang Xu, et al., Chem. Phys. Lett. 492 (2010) 235. https://doi.org/10.1016/j.cplett.2010.04.061
  4. Zhan-Guo Liu, Jia-Hu Ouyang, Yu Zhou, J. Mater. Sci. 43 (2008) 3596. https://doi.org/10.1007/s10853-008-2570-9
  5. Patrick E. Hopkins, et al., J. Heat Transfer 133 (2011) 061601. https://doi.org/10.1115/1.4003548
  6. Yuxin Wang, et al., J. Appl. Phys. 108 (2011) 043507.
  7. Ho-Soon Yang, et al., Acta Mater. 50 (2002) 2309. https://doi.org/10.1016/S1359-6454(02)00057-5
  8. D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66 (2002) 195304. https://doi.org/10.1103/PhysRevB.66.195304
  9. Yee Kan Koh, David G. Cahill, Phys. Rev. B 76 (2007) 075207. https://doi.org/10.1103/PhysRevB.76.075207
  10. David R. Clarke, Simon R. Phillpot, Mater. Today 8 (2005) 22.
  11. Jie Wu, et al., J. Am. Ceram. Soc. 85 (2002) 3031.
  12. Jun-Gu Kang, Kyong-Soo Hong, Ho-Soon Yang, Jpn. J. Appl. Phys. 49 (2010) 025702. https://doi.org/10.1143/JJAP.49.025702
  13. Keiichi Shimamura, et al., Int. J. Thermophys. 28 (2007) 1074. https://doi.org/10.1007/s10765-007-0232-9
  14. Chunlei Wan, Zhixue Qu, Aibing Du, Wei Pan, Acta Mater. 57 (2009) 4782. https://doi.org/10.1016/j.actamat.2009.06.040

Cited by

  1. 알루미늄 기판에 스크린 인쇄한 AlN 후막의 두께 방향으로 열전도도 평가 vol.22, pp.4, 2013, https://doi.org/10.6117/kmeps.2015.22.4.065
  2. What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer? vol.4, pp.2, 2013, https://doi.org/10.1088/2053-1591/aa576e
  3. Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method vol.9, pp.12, 2019, https://doi.org/10.3390/coatings9120788