DOI QR코드

DOI QR Code

Photovoltaic performance of flexible $Cu(In,Ga)Se_2$ thin-film solar cells with varying Cr impurity barrier thickness

  • Cho, Dae-Hyung (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Chung, Yong-Duck (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Kyu-Seok (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kyung-Hyun (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Ju-Hee (Korea Electronics Technology Institute (KETI)) ;
  • Park, Soo-Jeong (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Jeha (Research Institute of Photovoltaics, Cheongju University)
  • Received : 2012.07.04
  • Accepted : 2013.09.04
  • Published : 2013.11.30

Abstract

We report the effect of Cr impurity barrier on $Cu(In,Ga)Se_2$ thin-film solar cells prepared on flexible substrates. The Cr films with varying the thickness ($t_{Cr}$) were deposited on stainless steel substrates using direct-current magnetron sputtering. The solar cell performance was improved by increasing $t_{Cr}$ since the diffusion of Fe impurities from the substrate to CIGS was suppressed. Although the elemental composition, grain size, and strain of CIGS film showed little change with varying Fe content, the fill factor and the short-circuit current density increased as decreasing Fe. The Fe increased the series resistance, shunt paths, and saturation current density. The reduction of Fe caused a steeper bandgap grading in CIGS which enhances current collection due to higher electric fields in bulk CIGS. CIGS solar cells with 1000 nm-thick Cr barrier showed the best conversion efficiency of 9.05%.

Keywords

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37), Prog. Photovolt.: Res. Appl. 19 (2011) 84-92. https://doi.org/10.1002/pip.1088
  2. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19.9%-Efficient $ZnO/CdS/CuInGaSe_2$ solar cell with 81.2% fill factor, Prog. Photovolt.: Res. Appl. 16 (2008) 235-239. https://doi.org/10.1002/pip.822
  3. T. Böhnke, M. Edoff, Copper indium gallium diselenide thin films for sun angle detectors in space applications, Thin Solid Films 517 (2009) 2063-2068. https://doi.org/10.1016/j.tsf.2008.10.028
  4. L.C. Olsen, M.E. Gross, G.L. Graff, S.N. Kundu, X. Chu, S. Lin, Approaches to encapsulation of flexible CIGS cells, in: Proceedings of the SPIE 7048 (San Diego), 2008, pp. 70480O-1-70480O-8.
  5. N.M. Park, H.S. Lee, J. Kim, Reactive sputtering process for $CuIn_{1-x}Ga_xSe_2$ thin film solar cells, ETRI J. 34 (2012) 779-782. https://doi.org/10.4218/etrij.12.0212.0062
  6. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, CIGS absorbers and processes, Prog. Photovolt.: Res. Appl. 18 (2010) 453-466. https://doi.org/10.1002/pip.969
  7. K. Herz, F. Kessler, R. Wächter, M. Powalla, J. Schneider, A. Schulz, U. Schumacher, Dielectric barriers for flexible CIGS solar modules, Thin Solid Films 403-404 (2002) 384-389. https://doi.org/10.1016/S0040-6090(01)01516-4
  8. L. Zhang, Q. He, C. Xu, Y. Xue, C. Wang, C. Shi, J. Xiao, C. Li, Y. Sun, Effects of metal Cr barrier on the performance of flexible Cu(In, Ga)$Se_2$ solar cells deposited on stainless steel substrate, Chin. J. Semicond. 27 (2006) 1781-1784.
  9. W.K. Batchelor, M.E. Beck, R. Huntington, I.L. Repins, A. Rockett, W.N. Shafarman, F.S. Hasoon, J.S. Britt, Substrate and back contact effects in CIGS devices on steel foil, in: Proceedings of the 29th Photovoltaic Specialists Conference (New Orleans), 2002, pp. 716-719.
  10. M. Hartmann, M. Schmidt, A. Jasenek, H.W. Schock, F. Kessler, K. Herz, M. Powalla, Flexible and light weight substrates for Cu(In, Ga)$Se_2$ solar cells and modules, in: Proceedings of the 28th Photovoltaic Specialists Conference (Anchorage), 2000, pp. 638-641.
  11. D. Herrmann, F. Kessler, K. Herz, M. Powalla, A. Schulz, J. Schneider, U. Schumacher, High-performance barrier layers for flexible CIGS thin-film solar cells on metal foils, in: Proceedings of the Materials Research Society Symposium, vol. 763, 2003, pp. 287-292. San Francisco.
  12. K. Herz, A. Eicke, F. Kessler, R. Wachter, M. Powalla, Diffusion barriers for CIGS solar cells on metallic substrates, Thin Solid Films 431-432 (2003) 392-397. https://doi.org/10.1016/S0040-6090(03)00259-1
  13. C.Y. Shi, Y. Sun, Q. He, F.Y. Li, J.C. Zhao, Cu(In, Ga)$Se_2$ solar cells on stainlesssteel substrates covered with ZnO diffusion barriers, Sol. Energy Mater. Sol. Cells 93 (2009) 654-656. https://doi.org/10.1016/j.solmat.2008.12.004
  14. J.S. Britt, R. Huntington, J. VanAlsburg, S. Wiedeman, M.E. Beck, Cost improvement for flexible CIGS-based product, in: Proceedings of the 4th World Conference on Photovoltaic Energy Conversion (Waikoloa), 2006, pp. 388-391.
  15. M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi, High efficiency Cu(In, Ga)$Se_2$ - based solar cells: processing of novel absorber structures, in: Proceedings 24th Photovoltaic Specialists Conference (Waikoloa), 1994, pp. 68-75.
  16. D.-H. Cho, Y.-D. Chung, K.-S. Lee, N.-M. Park, K.-H. Kim, H.-W. Choi, J. Kim, Influence of growth temperature of transparent conducting oxide layer on Cu(In, Ga)$Se_2$ thin-film solar cells, Thin Solid Films 520 (2012) 2115-2118. https://doi.org/10.1016/j.tsf.2011.08.083
  17. D.-H. Cho, K.-S. Lee, Y.-D. Chung, J.-H. Kim, S.-J. Park, J. Kim, Electronic effect of Na on Cu(In, Ga)$Se_2$ solar cells, Appl. Phys. Lett. 101 (2012) 023901-1- 023901-4. https://doi.org/10.1063/1.4733679
  18. J.H. Yun, K.H. Kim, M.S. Kim, B.T. Ahn, S.J. Ahn, J.C. Lee, K.H. Yoon, Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate, Thin Solid Films 515 (2007) 5876-5879. https://doi.org/10.1016/j.tsf.2006.12.156
  19. R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, O. Yazdani- Assl, CIGS thin-film solar cells on steel substrates, Thin Solid Films 517 (2009) 2415-2418. https://doi.org/10.1016/j.tsf.2008.11.016
  20. M. Schuhmacher, H.N. Migeon, B. Rasser, Comparative useful yield measurements under oxygen, gallium and cesium bombardment, in: Proceedings of the 8th International Conference on Secondary Ion Mass Spectrometry (Amsterdam), 1991, pp. 49-52.
  21. S.S. Hegedus, W.N. Shafarman, Thin-film solar cells: device measurements and analysis, Prog. Photovolt.: Res. Appl. 12 (2004) 155-176. https://doi.org/10.1002/pip.518
  22. S. Ishizuka, A. Yamada, P. Fons, S. Niki, Flexible Cu(In, Ga)$Se_2$ solar cells fabricated using alkali-silicate glass thin layers as an alkali source material, J. Renewable Sustainable Energy 1 (2009) 013102. https://doi.org/10.1063/1.3005376
  23. T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M.A. Contreras, R. Noufi, H.W. Schock, Study of the effect of gallium grading in Cu(In, Ga)$Se_2$, Thin Solid Films 361-362 (2000) 478-481. https://doi.org/10.1016/S0040-6090(99)00845-7
  24. M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, R. Noufi, High efficiency graded bandgap thin-film polycrystalline Cu(In, Ga) $Se_2$-based solar cells, Sol. Energy Mater. Sol. Cells 41-42 (1996) 231-246. https://doi.org/10.1016/0927-0248(95)00145-X

Cited by

  1. Comparison between thin-film solar cells and copper–indium–gallium–diselenide in Southeast Asia vol.9, pp.8, 2013, https://doi.org/10.1049/iet-rpg.2015.0114
  2. Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study vol.55, pp.8, 2016, https://doi.org/10.7567/jjap.55.080303
  3. Interface Analysis of Cu(In,Ga)Se2 and ZnS Formed Using Sulfur Thermal Cracker vol.38, pp.2, 2013, https://doi.org/10.4218/etrij.16.2515.0031
  4. Optimization of Mo/Cr bilayer back contacts for thin-film solar cells vol.9, pp.None, 2018, https://doi.org/10.3762/bjnano.9.252