DOI QR코드

DOI QR Code

InGaAs/InP heterojunction-channel tunneling field-effect transistor for ultra-low operating and standby power application below supply voltage of 0.5 V

  • Kim, Kyung Rok (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology) ;
  • Yoon, Young Jun (School of Electronics Engineering, Kyungpook National University) ;
  • Cho, Seongjae (Department of Electronics Engineering, Gachon University) ;
  • Seo, Jae Hwa (School of Electronics Engineering, Kyungpook National University) ;
  • Lee, Jung-Hee (School of Electronics Engineering, Kyungpook National University) ;
  • Bae, Jin-Hyuk (School of Electronics Engineering, Kyungpook National University) ;
  • Cho, Eou-Sik (Department of Electronics Engineering, Gachon University) ;
  • Kang, In Man (School of Electronics Engineering, Kyungpook National University)
  • Received : 2013.06.11
  • Accepted : 2013.08.20
  • Published : 2013.11.30

Abstract

An $In_{0.53}Ga_{0.47}As$/InP heterojunction-channel tunneling field-effect transistor (TFET) with enhanced subthreshold swing (S) and on/off current ratio $I_{on}/I_{off}$) is studied. The proposed TFET achieves remarkable characteristics including S of 16.5 mV/dec, on-state current ($I_{on}$) of $421{\mu}A/{\mu}m$, $I_{on}/I_{off}$ of $1.2{\times}10^{12}$ by design optimization in doping type of $In_{0.53}Ga_{0.47}As$ channel at low gate ($V_{GS}$) and drain voltages ($V_{DS}$) of 0.5 V. Comparable performances are maintained at $V_{DS}$ below 0.5 V. Moreover, an extremely fast switching below 100 fs is accomplished by the device. It is confirmed that the proposed TFET has strong potentials for the ultra-low operating power and high-speed electron device.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. Appenzeller, Y.-M. Lin, J. Knoch, P. Avouris, Phys. Rev. Lett. 93 (2004) 196805. https://doi.org/10.1103/PhysRevLett.93.196805
  2. E.-H. Toh, G.H. Wang, G. Samudra, Y.-C. Yeo, Appl. Phys. Lett. 90 (2007) 263507. https://doi.org/10.1063/1.2748366
  3. A.C. Seabaugh, Q. Zhang, Proc. IEEE 98 (2010) 2095. https://doi.org/10.1109/JPROC.2010.2070470
  4. M.J. Lee, W.Y. Choi, J. Semicond. Technol. Sci. 11 (2011) 272. https://doi.org/10.5573/JSTS.2011.11.4.272
  5. B.-G. Park, S.W. Hwang, Y.J. Park, Nanoelectronic Devices, Pan Stanford Publishing, Danvers, 2012, p. 240.
  6. International Technology Roadmap for Semiconductors (ITRS), 2011 ed., 2011. Process Integration, Devices & Structures (PIDS) Chapter.
  7. S. Cho, M.-C. Sun, G. Kim, T.I. Kamins, B.-G. Park, J.S. Harris Jr., J. Semicond. Technol. Sci. 11 (2011) 182. https://doi.org/10.5573/JSTS.2011.11.3.182
  8. S. Cho, I.M. Kang, T.I. Kamins, B.-G. Park, J.S. Harris Jr., Appl. Phys. Lett. 99 (2011) 243505. https://doi.org/10.1063/1.3670325
  9. R. Lida, S.-H. Kim, M. Yokoyama, N. Taoka, S.-H. Lee, M. Takenaka, S. Takagi, J. Appl. Phys. 110 (2011) 124505. https://doi.org/10.1063/1.3668120
  10. J. Knoch, S. Mantl, J. Appenzeller, Solid-state Electron 51 (2007) 572. https://doi.org/10.1016/j.sse.2007.02.001
  11. E.-H. Toh, G.H. Wang, G. Samudra, Y.-C. Yeo, J. Appl. Phys. 103 (2008) 104504. https://doi.org/10.1063/1.2924413
  12. B.M. Borg, K.A. Dick, B. Ganjipour, M.-E. Pistol, L.-E. Wernersson, C. Thelander, Nano Lett. 10 (2010) 4080. https://doi.org/10.1021/nl102145h
  13. ATLAS User's Manual, SILVACO International, 2012.
  14. W.K. Liu, D. Lubysheva, J.M. Fastenau, Y. Wu, M.T. Bulsara, E.A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W.E. Hoke, J.R. LaRoche, K.J. Herrick, T.E. Kazior, D. Clark, D. Smith, R.F. Thompson, C. Drazek, N. Daval, J. Cryst. Growth 311 (2009) 1979. https://doi.org/10.1016/j.jcrysgro.2008.10.061
  15. S. Cheung, J.-H. Baek, R.P. Scott, N.K. Fontaine, F.M. Soares, X. Zhou, D.M. Baney, S.J.B. Yoo, IEEE Photonic Technol. Lett. 22 (2010) 1793. https://doi.org/10.1109/LPT.2010.2086050
  16. P. Franzosi, G. Salviati, F. Genova, A. Stano, F. Taiariol, J. Cryst. Growth 75 (1986) 521. https://doi.org/10.1016/0022-0248(86)90098-9
  17. G. Salviati, C. Ferrari, L. Lazzarini, L. Nasi, A.V. Drigo, M. Berti, D. De Salvador, M. Natali, M. Mazzer, Appl. Surf. Sci. 188 (2002) 36. https://doi.org/10.1016/S0169-4332(01)00726-7
  18. T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat, IEDM Tech. Dig. 947 (2008).
  19. R. Narang, M. Saxena, R.S. Gupta, M. Gupta, J. Semicond. Technol. Sci. 12 (2012) 482. https://doi.org/10.5573/JSTS.2012.12.4.482
  20. K.K. Bhuwalka, J. Schulze, I. Eisele, IEEE Trans. Electron Devices 52 (2005) 1541. https://doi.org/10.1109/TED.2005.850618
  21. K. Boucart, A.M. Ionesce, IEEE Trans. Electron Devices 54 (2007) 1752.
  22. S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, IEEE Trans. Electron Devices 56 (2009) 2092. https://doi.org/10.1109/TED.2009.2026516
  23. Y. Yang, X. Tong, L.-T. Yang, P.-F. Guuo, L. Fan, Y.-C. Yeo, IEEE Electron Device Lett. 31 (2010) 7522.
  24. S. Cho, J.S. Lee, K.R. Kim, B.-G. Park, J.S. Harris Jr., I.M. Kang, IEEE Trans. Electron Devices 58 (2011) 4164. https://doi.org/10.1109/TED.2011.2167335

Cited by

  1. Investigation of InAs/InGaAs/InP Heterojunction Tunneling Field-Effect Transistors vol.9, pp.5, 2013, https://doi.org/10.5370/jeet.2014.9.5.1654
  2. High-performance Ge/GaAs heterojunction tunneling FET with a channel engineering for sub-0.5 V operation vol.30, pp.3, 2013, https://doi.org/10.1088/0268-1242/30/3/035020
  3. Temperature dependence of photoluminescence from Γ–Γ and Γ–X minibands in lattice matched InGaAs/InP superlattices vol.48, pp.46, 2013, https://doi.org/10.1088/0022-3727/48/46/465101