DOI QR코드

DOI QR Code

Measurement and Property of Peripheral Blood Velocity by Using Clip-type Pulsimeter Equipped with a Magnetic-sensing Hall Device

자성센싱 홀소자 맥진기를 이용한 말초혈류속도 측정 및 특성 연구

  • Kim, Keun-Ho (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
  • 김근호 (상지대학교 보건과학대학 한방의료공학과) ;
  • 이상석 (상지대학교 보건과학대학 한방의료공학과)
  • Received : 2013.08.03
  • Accepted : 2013.10.10
  • Published : 2013.10.31

Abstract

We measure signals off a radial arterial pulse by using a prototype clamping pulsimeter equipped with a Hall device, which produces signals through a voltage-detecting circuit. The two important measuring times of the systolic peak time and the reflective peak time for a temporally pulsed signal are analyzed for an arbitrary, pulsed wave at one position of a small permanent magnet. The measured value of the PPWV (peripheral pulse wave velocity) is about 1.25 m/s. Thus, this method is proven to be one new method to measure an exact value of the pulse wave velocity. To measure the PBV (peripheral blood velocity), the we simultaneously connect the radial artery pulsimeter to a PPG (photoplethysmography). The average value of the PBV is about 0.46 m/s. The prediction of the blood vessel's property from an analysis of the PPBV may be useful for developing an Oriental-Western diagnostic medical signal device for a U-health-care system in the future.

비가압 상태에서 정확하게 측정한 맥진파형 신호를 얻기 위하여 영구자석과 홀소자로 구비된 휴대식 집게형 맥진기 시제품을 개발하였다. 집게형 맥진기를 이용하여 얻은 요골동맥 맥진 파형을 분석한 후, 결정한 두 개의 중요한 인자들은 수축기 시간과 반사파 시간 이었다. 맥진파형의 시간차 분석으로 얻은 말초맥파전달속도는 평균 1.25 m/s로 나타났다. 집게형 맥진기와 용적맥파계를 동시 분석하는 시스템으로 맥진파형과 용적맥파형 두 피크값을 비교 측정한 결과 말초혈류속도가 평균 0.46m/s로 나타났다. 말초혈류속도 분석을 통한 혈관 특성을 예측함으로써, 미래의 한양방 협진용 건강관리 의료기기에서 제시하는 주요 지수로 응용할 수 있는 가능성을 확인하였다.

Keywords

Acknowledgement

Supported by : 보건복지부

References

  1. S. S. Lee, D. H. Nam, Y. S. Hong, W. B. Lee and I. H. Son et al., Sensors 11, 1784 (2011). https://doi.org/10.3390/s110201784
  2. D. H. Nam, W. B. Lee, Y. S. Hong and S. S. Lee, Sensors 13, 4714 (2013). https://doi.org/10.3390/s130404714
  3. R. Asmar, A. Benetos, G. M. London, C. Hughe and Y. Weiss et al., Blood Pressure 4, 48 (1995). https://doi.org/10.3109/08037059509077567
  4. Q. Yu, J. Zhou and Y. C. Fung, Am. J. Physiol. Heart Circ. Physiol. 265, 52 (1993).
  5. M. F. P. O'Rourke, R. P. Kelly and A. P. Avolio, The Arterial Pulse, 1st ed. (Lea & Febiger, Philadelphia, USA, 1992).
  6. J. C. Bramwell and A. V. Hill, in Proceedings of the Royal Society (London, 1922), p. 298.
  7. J. Allen, Physiol. Meas. 28, R1 (2007). https://doi.org/10.1088/0967-3334/28/3/R01
  8. K. Shelley and S. Shelley, Pulse Oximeter Waveform: Olethysmography, in Clinical Monitorning, edited by C. Lake, R. Hines and C. Blitt, (W. B. Saunders Company, 2001), p. 420.
  9. A. Fronek, Noninvasive Diagnosis in Vascular Disease (McGraw Hill, New York, 1989).
  10. I. H. Son and S. S. Lee, J. Korean Magn. Soc. 21, 104 (2011). https://doi.org/10.4283/JKMS.2011.21.3.104
  11. M. C. Ahn, J. G. Choi, I. H. Son, S. S. Lee and K. H. Kim, J. Korean Magn. Soc. 20, 106 (2010). https://doi.org/10.4283/JKMS.2010.20.3.106
  12. S. S. Lee, M. C. Ahn and S. H. Ahn, J. Magn. 14, 132 (2009). https://doi.org/10.4283/JMAG.2009.14.3.132
  13. S. S. Lee, I. H. Son, J. G. Choi, D. H. Nam and Y. S. Hong et al., J. Korean Phys. Soc. 58, 349 (2011). https://doi.org/10.3938/jkps.58.349
  14. P. A. Shaltis, A. T. Reisner and H. H. Asada, IEEE Trans. Biomed Eng. 55, 1775 (2008). https://doi.org/10.1109/TBME.2008.919142