DOI QR코드

DOI QR Code

Impact of Dietary Fibers from Various Source in Wheat Flour Gel Model: Aspect of Suitability of Processing and In Vitro Starch Digestibility

원료별 식이섬유의 밀가루 대체 시 가공적성 및 전분소화지연효과

  • Lee, Hong Im (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Hyeon Gyu (Department of Food and Nutrition, Hanyang University) ;
  • Bae, In Young (Department of Oriental Medicine Fermentation, Far East University)
  • 이홍임 (한양대학교 식품영양학과) ;
  • 이현규 (한양대학교 식품영양학과) ;
  • 배인영 (극동대학교 한약발효학과)
  • Received : 2013.09.01
  • Accepted : 2013.10.21
  • Published : 2013.11.30

Abstract

Wheat flour in a gel model was replaced with dietary fibers from various sources (oat, pea, potato, and wheat) in order to investigate their baking quality and in vitro starch digestibility. Then their hydration properties and solvent retention capacities (SRC) were measured. Over all, the gels with dietary fibers experienced increased water absorption index, swelling power, and SRC values, while water solubility decreased dose-dependently. The storage modulus (G') and loss modulus (G") of the wheat flour gel increased by the addition of pea and potato fibers but decreased by oat and wheat fibers. The wheat flour gels with dietary fibers showed considerable decreases in the amount of released glucose. Also wheat flour replacement with dietary fibers lowered RDS and increased RS. Among SRC values, water and sucrose showed significant positive correlations with TDF and IDF. The contents of TDF, IDF, and SDF were highly correlated with RS (positive) and pGI (negative). Specially, for lowering starch digestibility, TDF and IDF were more important factors than SDF.

귀리, 콩, 감자, 밀에서 유래한 다양한 식이섬유를 밀가루 대신 10-40%까지 대체함에 따른 수화능, 동적점탄성, 용매흡착능 및 in vitro starch digestion을 비교하였다. 귀리, 콩, 감자, 밀에서 유래한 다양한 식이섬유를 식이섬유의 대체비율이 증가할수록 수분흡착능과 팽윤력은 증가한 반면, 수분용해도는 감소하였다. 밀가루 대신 콩과 감자 식이섬유를 대체함에 따라 동적점탄성은 증가하였으나, 귀리와 밀 식이섬유 대체에서는 오히려 감하는 경향을 보였다. 식이섬유 대체에 따른 밀가루의 용매흡착능 변화를 분석한 결과, 낮은 대체량의 귀리 식이섬유와 높은 대체량의 콩과 감자 식이섬유가 활용 가능성을 보였다. 원료별 식이섬유 대체 시 밀가루 겔의 전분소화 패턴은 식이섬유 대체 비율이 증가함에 따라 glucose 방출은 감소하였으나, 원료별 특성에 따른 유의적인 차이는 없었다. 특히, 밀식이섬유를 제외한 귀리, 콩, 감자 식이섬유는 모두 RDS감소와 RS증가에 따른 pGI 저하를 보여 실제 식품소재로 활용 시 가공적성을 유지할 수 있다면 전분소화지연효과를 기대할 수 있음을 확인할 수 있었다. 한편, 식이섬유의 원료에 따른 식이섬유 조성과 전분소화 관련 특성 간 상관관계를 분석한 결과, 전분소화를 지연시키는 효과는 수용성 식이섬유보다는 불용성과 총식이섬유 함량이 중요한 인자임을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. AOAC. 2000. Official Methods of Analysis. Association of Official Analytical Chemists (No. 991.43). Washington DC, USA.
  2. AACC. 2000. Approved Methods of the American Association of the Cereal Chemists (No. 32.40; No. 56.11), St. Paul, MN, USA.
  3. Angioloni A, Collar C. 2009. Gel, dough and fibre enriched fresh breads: Relationships between quality features and staling kinetics. J. Food Eng. 91: 526-532. https://doi.org/10.1016/j.jfoodeng.2008.09.033
  4. Angioloni A, Collar C. 2009a. Small and large deformation viscoelastic behavior of selected fiber blends with gelling properties. Food Hydrocolloid. 23: 742-748. https://doi.org/10.1016/j.foodhyd.2008.04.005
  5. Angioloni A, Collar C. 2011. Physicochemical and nutritional properties of reduced-caloric density high-fibre breads. LWTFood Sci. Technol. 44: 747-758.
  6. Aravind N, Sissons M, Egan N, Fellows C. 2012. Effect of insoluble dietary bre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem. 130: 299-309. https://doi.org/10.1016/j.foodchem.2011.07.042
  7. Delago-Andrade C, Conde-Aguilera JA, Haro. A, Pastoriza S, Rufian-Henares JA. 2010. A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 52: 239-246. https://doi.org/10.1016/j.jcs.2010.05.013
  8. Dikeman CL,. Fahey GC. 2006. Viscosity as related to dietary fiber: A Review. Crit Rev Food Sci. 46: 649-663. https://doi.org/10.1080/10408390500511862
  9. Duyvejonck AE, Lagrain B, Dornez E, Jan A. Delcour, Courtin CM. 2012. Suitability of solvent retention capacity tests to assess the cookie and bread making quality of European wheat ours. LWT-Food Sci. Technol. 47: 56-63. https://doi.org/10.1016/j.lwt.2012.01.002
  10. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H. 2011. Dietary bre and bre-rich by-products of food processing: Characterisation,technological functionality and commercial applications: A review. Food Chem. 124: 411-421. https://doi.org/10.1016/j.foodchem.2010.06.077
  11. Fuentes-Alventosa JM, Rodriguez-Gutierrez G, Jaramillo-Carmona S, Espejo-Calvo JA, Rodriguez-Arcos R, Fernandez-Bolanos J, Guillen-Bejarano R, Jimenez-Araujo A. 2009. Effect of extraction method on chemical composition and functional characteristics of high dietary bre powders obtained from asparagus byproducts. Food Chem. 113: 665-671. https://doi.org/10.1016/j.foodchem.2008.07.075
  12. Goni I, Garcia-Alonso A, Saura-Calixto F. 1997. A starch hydrolysis procedure to estimate glycemic index. Nutr Res. 17: 427-437. https://doi.org/10.1016/S0271-5317(97)00010-9
  13. Kim JY, Lee SM, Bae IY, Park HG, Lee HG, Lee S. 2011. (1- 3)(1-6)-${\beta}$-Glucan-enriched materials from Lentinus edodes mushroom as a high-bre and low-calorie our substitute for baked foods. J. Sci. Food Agr. 91: 1915-1919. https://doi.org/10.1002/jsfa.4409
  14. Lee S, Inglett GE. 2006. Functional characterization of steam jetcooked ${\beta}$-glucan-rich barley flour as an oil barrier in frying batters. J. Food Sci. 71: 308-313. https://doi.org/10.1111/j.1750-3841.2006.00121.x
  15. Lecumberri E, Mateos R, Izquierdo-Pulido M, Ruperez P, Goya L, Bravo L. 2007. Dietary bre composition, antioxidant capacity and physico-chemical properties of a bre-rich product from cocoa (Theobroma cacao L.). Food Chem. 104: 948-954. https://doi.org/10.1016/j.foodchem.2006.12.054
  16. Mann JI, Cummings JH. 2009. Possible implications for health of the different denitions of dietary fibre. Nutr Metab Cardiovas. 19: 226-229. https://doi.org/10.1016/j.numecd.2009.02.002
  17. Navarro-Gonzalez I, Garcia-Valverde V, Garcia-Alonso J, Periago MJ. 2011. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res. Int. 44: 1528-1535. https://doi.org/10.1016/j.foodres.2011.04.005
  18. Pourfarzad A, Mahdavian-Mehr H, Sedaghat N. 2013. Coffee silverskin as a source of dietary ber in bread-making: Optimization of chemical treatment using response surface methodology. LWT-Food Sci. Technol. 50: 599-606. https://doi.org/10.1016/j.lwt.2012.08.001
  19. Rosell CM, Santos E, Collar C. 2009. Physico-chemical properties of commercial bres from different sources: A comparative approach. Food Res. Int. 42: 176-184. https://doi.org/10.1016/j.foodres.2008.10.003
  20. Sasaki T, Kohyama K. 2011. Effect of non-starch polysaccharides on the in vitro digestibility and rheological properties of rice starch gel. Food Chem. 127: 541-546. https://doi.org/10.1016/j.foodchem.2011.01.038
  21. Thondre PS, Monro JA, Mishra S, Henry CJK. 2010. High molecular weight barley ${\beta}$-glucan decreases particle breakdown in chapattis (Indian flat breads) during in vitro digestion. Food Res. Int. 43: 1476-1481. https://doi.org/10.1016/j.foodres.2010.04.012

Cited by

  1. Characteristics of Water-soluble Polysaccharides Extracts Produced from Perilla Seed Meal via Enzymatic Hydrolysis vol.18, pp.1, 2013, https://doi.org/10.1080/19476337.2020.1814420