DOI QR코드

DOI QR Code

Concentration of Rice Bran Lipid Soluble Bioactive Substances Using Supercritical Carbon Dioxide

초임계 이산화탄소를 이용한 미강유 생리활성물질 농축

  • Kim, Inhwan (Department of Food and Nutrition, Korea University) ;
  • Yoon, Sung Won (Department of Food and Nutrition, Korea University) ;
  • Lee, Junsoo (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Jeom-Sig (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, In-Hwan (Department of Food and Nutrition, Korea University)
  • Received : 2013.10.10
  • Accepted : 2013.11.15
  • Published : 2013.11.30

Abstract

The aim of the present study was to examine the effects of different pressure and temperature combinations on the concentrations of tocols homologues, policosanol, phytosterol, and ${\gamma}$-oryzanol in crude rice bran oil (RBO) using supercritical carbon dioxide (SC-$CO_2$). To effectively separate oily substances from bioactive substances, fatty acid ethyl esterification was performed by sulfuric acid or the lipase catalytic method. In sulfuric acid esterification, ${\gamma}$-tocotrienol content was decreased by ca. 50%, whereas in lipase esterification, ${\gamma}$-tocotrienol content was not decreased. Therefore, lipase catalytic esterification was performed for the fatty acid alkyl esterification of RBO. The fractional extraction of RBO ethyl esters was performed using SC-$CO_2$ in the condition of 9.62 Mpa, 10.34 MPa, or 11.03 MPa and $45^{\circ}C$, $50^{\circ}C$, or $55^{\circ}C$. During the fractionation of RBO using SC-$CO_2$, a little tocols content was extracted with fatty acid ethyl esters, but policosanol and phytosterol were not extracted. Especially, there is a high correlation ($R^2$=0.9306) between the density of $CO_2$ and tocols contents extracted to the fractions. The concentration rates of tocols and phytosterol were the highest in the condition of $55^{\circ}C$ and 9.62 MPa. Therefore, the lower $CO_2$ density applied, the more efficient the concentrations of tocols and phytosterol were in this study.

쌀 도정시 발생하는 미강의 부가가치를 높이기 위하여, 미강내 생리기능성 물질를 고농도로 농축하기 위한 전처리 방법 및 농축조건을 확립하고자 하였다. 미강으로부터 추출한 조미강유중 지방산을 분리하기 위하여 산 또는 효소 촉매를 이용하여 지방산 에틸 에스터를 제조하였다. 산 촉매 에스터 반응시 tocopherol류의 함량은 크게 영향을 받지 않았으나, tocotrienol류의 함량은 크게 감소하였고, 특히 ${\gamma}$-tocotrienol은 52% 감소하였다. 효소 촉매 에스터반응시 tocopherol류와 tocotrienol류 모두 크게 변화가 없었으므로 효소촉매를 이용한 에틸 에스터 반응이 생리활성물질 농축에는 더 적합하였다. 효소 촉매 반응을 이용하여 생산한 미강유 에틸 에스터를 초임계 이산화탄소를 이용하여 분리하고, 생리활성물질을 농축하였다. 온도 조건은 $45^{\circ}C$, $50^{\circ}C$, $55^{\circ}C$, 압력조건은 9.62 MPa, 10.34MPa, 11.03MPa 이었다. Tocols는 소량이지만, 1-5번 추출 분획에서 모두 검출되었으며, 5번 분획에 가까워질수록 더 많은 양의 tocols이 추출되었다. ${\gamma}$-Oryzanol도 매우 소량이기는 하나 1-5번 분획에서 추출되었다. Policosanol과 phytosterol은 1-5번 분획에서 전혀 추출되지 않았다. 특히 초임계 이산화탄소의 밀도와 지방산 에스터와 함께 추출되는 tocols 및 ${\gamma}$-oryzanol의 양은 높은 상관관계를 가지고 있었다($R^2{_{tocols}}$= 0.9306, $R^2{_{oryzanol}}$= 0.7934). Tocols와 phytosterol은 $55^{\circ}C$, 9.62MPa에서 농축시 농축률이 가장 높았으며, ${\gamma}$-oryzanol과 policosanol은 각 조건별로 농축률에 변화가 없었다. 또한 초임계 이산화탄소의 밀도가 클수록 농축속도는 매우 빨랐으나 농축물질의 선택성은 낮았다. 따라서 생리활성물질을 농축하는데에는 상대적으로 낮은 밀도의 초임계 이산화탄소를 적용하는 것이 더 효과적이었으며, 이러한 결과는 건강기능식품등에 이용하는 생리활성물질의 농축 및 정제 공정에 효율적으로 적용될 수 있을 것이다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. AOCS. 1994. Official Methods and Recommended Practices of the American Oil Chemists' Society, 4th ed. the American Oil Chemists' Society. AOCS Press. Champaign, IL. USA.
  2. Fang T, Goto M, Sasaki M, Yang D. 2008. Extraction and Purification of Natural Tocopherols by Supercritical $CO_2$. In: Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds. Martinez, JL (ed). CRC press. Boca Raton, FL. USA. pp. 103-140.
  3. Fang T, Goto M, Yun Z, Ding X, Hirose T. 2004. Phase equilibria for binary systems of methyl oleate-supercritical $CO_2$ and ${\alpha}$- tocopherol-supercritical $CO_2$. J. Supercrit. Fluids 30:1-16. https://doi.org/10.1016/S0896-8446(03)00165-7
  4. Ju Y-H, Zullaikah S. 2013. Effect of acid-catalyzed methanolysis on the bioactive components of rice bran oil. J. Taiwan Ins. Chem. Eng. http://dx.doi.org/10.1016/j.jtice.2013.03. 006 (in press)
  5. Juliano BO. 1985a. Polisaccharides, proteins and lipids of rice. In: Rice: chemistry and technology. Juliano, BO (ed). American Association of Cereal Chemists. St. Paul. Minn. USA. pp. 59-169.
  6. Juliano BO. 1985b. Rice bran. In: Rice: Chemistry and Technology. Juliano, BO (ed). The American Association of Cereal Chemists. St. Paul. Minn. USA. pp. 647-688.
  7. Kim C-W, Kim H-S, Kim B-Y, Baik M-Y. 2011. Proteolysis of defatted rice bran using commercial proteases and characterization of its hydrolysates. Food Eng. Prog. 15:41-47.
  8. Patel M, Naik S. 2004. Gamma-oryzanol from rice bran oil: a review. J. Sci. Ind. Res. India 63:569-578.
  9. Prasad MN. 2011. Health Benefits of Rice Bran-A Review. J. Nutr. Food Sci. 1: 1000108.
  10. Temelli F, Seifried B. 2011. Bioseparation of Nutraceuticals Using Supercritical Carbon Dioxide. In: Food Engineering Interfaces. Aguilera JM, BarbosaCanovas GV, Simpson R, W14zpdldlfelti-Chanes J, Bermudez-Aguirre, D (ed). Springer. New York, NY, USA. pp. 353-392.
  11. Tiwari U, Cummins E. 2009. Nutritional importance and effect of processing on tocols in cereals. Trends Food Sci. Tech. 20:511-520. https://doi.org/10.1016/j.tifs.2009.06.001
  12. Xu X, Jacobsen C, Nielsen NS, Heinrich MT, Zhou D. 2002. Purification and deodorization of structured lipids by short path distillation. Eur. J Lipid Sci. Tech. 104:745-755. https://doi.org/10.1002/1438-9312(200211)104:11<745::AID-EJLT745>3.0.CO;2-N