Physical and Biological Evaluations of Cross-linked Hyaluronic Acid Film

가교결합된 히알루론산 필름의 물리적/생물학적 평가

  • Park, Hyo Seung (Department of Chemical and Biomacromolecular Engineering, Seoul National University of Science and Technology) ;
  • kim, Ah Ram (Department of Chemical and Biomacromolecular Engineering, Seoul National University of Science and Technology) ;
  • Noh, Insup (Department of Chemical and Biomacromolecular Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
  • 박효승 (서울과학기술대학교 화공생명공학과) ;
  • 김아람 (서울과학기술대학교 화공생명공학과) ;
  • 노인섭 (서울과학기술대학교 화공생명공학과, 의공학-바이오소재융합 협동과정)
  • Received : 2013.10.25
  • Accepted : 2013.11.07
  • Published : 2013.12.01

Abstract

Hyaluronic acid (HA) has been employed as a typical biomaterial in various medical areas such as dermal filler, scaffolds for tissue engineering and drug delivery, and etc. In this report, the HA films were fabricated by controlling the concentrations of 1,4-butanediol diglycidyl ether (BDDE) as a cross-linking agent, and their physical and biological properties have been evaluated. After swelling in water and dehydration by lyophilization of the cross-linked HA films, their morphologies and swelling behaviors after swelling in water for 24 hrs have been observed with scanning electron microscopy and measured with a microbalance, respectively. After homogenizing the films into microparticles, cell viability of the films was indirectly performed on the particles by covering the films with the HA films. Their cell compatibilities were evaluated by the assays of live & dead, thiazolyl blue tetrazolium bromide (MTT), bromodeoxyuridine (BrdU) and neutral red, by using extracts of the microparticles of HA films. The HA particles showed excellent cell compatibilities, showing possibilities of its applications as biomaterials.

Keywords

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. G. D. Prestwich, D. M. Marecak, J. F. Marecek, K. P. Vercruyssea, M. R. Ziebell, "Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives," J. Controlled Release, 53, 93-103 (1998). https://doi.org/10.1016/S0168-3659(97)00242-3
  2. G. Kogan, L. Soltes, R. Stern, P. Gemeiner, "Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications," Biotechnol. Lett., 29, 17-25 (2007).
  3. G. D. Monheit, K. M. Coleman, "Hyaluronic acid fillers," Dermatologic Therapy, 19, 141-150 (2006). https://doi.org/10.1111/j.1529-8019.2006.00068.x
  4. S. Yamane, N. Iwasaki, T. Majima, T. Funakoshi, T. Masuko, K. Harad, A. Minami, K. Monde, S. Nishimura, "Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering," Biomaterials, 26, 611-619 (2005). https://doi.org/10.1016/j.biomaterials.2004.03.013
  5. K. Kawasaki, M. Ochi, Y. Uchio, N. Adachi, M. Matsusaki "Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels," J. Clin. Invest., 179, 142-148 (1999).
  6. J. C. Routh, B. A. Inman, Y. Reinberg, "Dextranomer/hyaluronic acid for pediatric vesicoureteral reflux: systematic review," Pediatrics, 125, 1010 (2010). https://doi.org/10.1542/peds.2009-2225
  7. V. C. Hascall, D. Heinegard, "Aggregation of Cartilage Proteoglycans," J. Biol. Chem., 249, 4232-4241 (1974).
  8. N. J. Lowe, A. Maxwell, P. Lowe, M. G. Duick, K. Shah," "Hyaluronic acid skin fillers: adverse reactions and skin testing," J. Am Acad Dermatol., 45, 930-933 (2001). https://doi.org/10.1067/mjd.2001.117381
  9. H. M. Schrager, J. G. Rheinwald, M R. Wessels, J Clin Invest, "Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection," J. Clin. Inves., 98, 1954-1958 (1996). https://doi.org/10.1172/JCI118998
  10. J. A. Ripellino, M. M. Klinger, R. U. Margolis, R. K. Margolis, "The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections, application to chick embryo and rat brain," J. Histochem Cytochem., 33, 1060 (1985). https://doi.org/10.1177/33.10.4045184
  11. S. Gerecht, J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer, G. V. Novakovic, "Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells," PNAS, 11299-11303 (2007).
  12. W. M. Tian, C. L. Zhang, S. P. Hou, X. Yu, F. Z. Cui, Q. Y. Xu, S. L. Sheng, H. Cui, H. D. Li, "Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro," J. Controlled Release, 102, 13-22 (2005). https://doi.org/10.1016/j.jconrel.2004.09.025
  13. Y. D. Park, N. Tirelli, J. A. Hubbell, "Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks," Biomaterials, 24, 893-900 (2003). https://doi.org/10.1016/S0142-9612(02)00420-9
  14. F. Z. Cui, W. M. Tian, S. P. Hou, Q. Y. Xu, I. S. Lee, "Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering," J. Mater. Sci.: Mater. Med., 17, 1393-1401 (2006). https://doi.org/10.1007/s10856-006-0615-7
  15. C. T. Mcgary, R. H. RAJA, P. H. Weigel, "Endocytosis of hyaluronic acid by rat liver endothelial cells," Biochem., 257, 875-884 (1989).
  16. L. A. Solchaga, J. E. Dennis, V. M. Goldberg, A. I. Caplan "Hyaluronic acid-B ased polymers as cell Carriers for tissue-engineered repair of bone and cartilage," J. Orthopavhc. Resvurch., 17, 205-213 (1999).
  17. H. J. BRODY "Use of hyaluronidase in the treatment of franulomatous hyaluronic acid reactions or unwanted Hyaluronic acid misplacement," Dermatol. Surg., 31, 893-897 (2005).
  18. E. J. Franzmann, G. L. Schroeder, W. J. Goodwin, D. T. Weed, P. Fisher, V. B. Lokeshwar, "Expression of tumor markers hyaluronic acid and hyaluronidase(Hyal1) in head and neck tomors," Int. J. Cancer, 106, 438-445 (2003). https://doi.org/10.1002/ijc.11252
  19. P. Bulpitt, D. Aeschlimann, "New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels," J. Biomed. Mater. Res., 47, 152-169 (1999). https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I
  20. J. B. Leach, K. A. Bivens, C. W. Patrick, C. E. Schmidt "Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds," Biotechnol. and Bioeng., 82, 578-589 (2002).
  21. J. Kim, I. S. Kim, T. H. Cho, K. B. Lee, S. J. Hwang, G. Tac, I Noh, S. H. Lee, Y. Park, K. Sun "Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells", Biomaterials, 28, 1830-1937 (2007). https://doi.org/10.1016/j.biomaterials.2006.11.050
  22. F. Z. Cui, W. M. Tian, S. P. Hou, Q. Y. Xu, I. S. Lee "Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering", J. Mater. Sci.: Mater. Med., 17, 1393-1401 (2006). https://doi.org/10.1007/s10856-006-0615-7
  23. L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patill, L. Zichner, D. Kaplan, R. Langer, G Vunjak-Novakovic "Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow", Annals. of Biomed. Eng., 32, 112-122 (2004). https://doi.org/10.1023/B:ABME.0000007796.48329.b4
  24. Y. Wang, H. J. Kima, G. Vunjak-Novakovicb, D. L. Kaplana "Stem cell-based tissue engineering with silk biomaterials", Biomaterials, 27, 6064-6082 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.008
  25. Y. Luo, K. R. Kirker, G. D. Prestwich "Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery", J. Controlled Release, 69, 169-184 (2000). https://doi.org/10.1016/S0168-3659(00)00300-X
  26. R. A. Peattie, A. P. Nayate, M. A. Firpo, J. Shelby, R. J. Fisher, G. D. Prestwich "Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants", Biomaterials, 25, 2789-2798 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.054
  27. D. B. Pike, S. Cai, K. R. Pomraning, M. A. Firpo, R. J. Fisher, X. Z. Shu, G. D. Prestwich, R. A. Peattie "Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF", Biomaterials, 27, 5242-5251 (2006). https://doi.org/10.1016/j.biomaterials.2006.05.018
  28. B. Wang, J. Zhang, G. Cheng, S. Dong, "Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol-gel/hydrogel composite film", Analyrica. Chimica. Acta., 407, 111-118 (2000). https://doi.org/10.1016/S0003-2670(99)00778-3
  29. J. K. Park, J. Yeom, E. J. Oh, M. Reddy, J. Y. Kim, D. W. Cho, H. P. Lim, N. S. Kim, S. W. Park, H. I. Shin, D. J. Yang, K. B. Park, S. K. Hahn "Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications", Acta Biomaterialia, 5, 3394-3403 (2009). https://doi.org/10.1016/j.actbio.2009.05.019
  30. D. V. Volodkin, M. Delcea, H. Mo hwald, and A. G. Skirtach "Remote Near-IR Light Activation of a Hyaluronic Acid/Poly(L-lysine) Multilayered Film and Film-Entrapped Microcapsules", Applied Mater. & Interface, 8, 1705-1710 (2009).
  31. S. Park, S. H. Bhang, W. G. La, J. Seo, B. S. Kim, K. Char, "Dual roles of hyaluronic acids in multilayer films capturing nanocarriers for drug-eluting coatings," Biomaterials, 33, 5468-5477 (2012). https://doi.org/10.1016/j.biomaterials.2012.04.005
  32. X. X. Zhang, T. F. Guo, Y. W. Zhang, "Formation of gears through buckling multilayered film-hydrogel structures," Thin Solid Films, 518, 6048-6051 (2010). https://doi.org/10.1016/j.tsf.2010.06.043