DOI QR코드

DOI QR Code

Effects of Mg Incorporation by Co-sputtering into the ZnO Channel Layer of Thin-film Transistors

  • Lee, Jong Hoon (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Kim, Chang Hoi (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Kim, Hong Seung (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Jang, Nak Woon (Division of Electrical and Electronics Engineering, Korea Maritime University) ;
  • Yun, Young (Department of Radio Communication Engineering, Korea Maritime University) ;
  • Do, Lee Mi (RFID/USN Research Department, Electronics and Telecommunication Research Institute) ;
  • Baek, Kyu Ha (RFID/USN Research Department, Electronics and Telecommunication Research Institute)
  • Received : 2012.11.19
  • Accepted : 2013.12.11
  • Published : 2013.03.31

Abstract

We fabricated a series of ZnO-based thin-film transistors (TFTs) in which the Mg composition ratio in the active layer was varied by controlling the RF power applied to the ZnO and the $Mg_{0.3}Zn_{0.7}O$ targets. $Mg_xZn_{1-x}O$ alloy films were deposited by RF co-sputtering onto a $SiO_2/n^+-Si$ substrate at $300^{\circ}C$. The Mg content in each ZnO film was measured and the band gaps were found to increase from 3.27 to 3.93 eV with increasing Mg content. The field effect mobility and the on/off ratio were decreased from $9.12cm^2V^{-1}s^{-1}$ and $10^9$ to $3.11cm^2V^{-1}s^{-1}$ and $10^8$, respectively, as Mg incorporation was increased. We report the feasibility of Mg incorporation by using a co-sputtering technique, and the electrical and the structural properties of the TFT ZnO active layer as a function of Mg content are discussed.

Keywords

References

  1. R. L. Hoffman, B. J. Norris and J. F.Wager, Appl. Phys. Lett. 82, 733 (2003). https://doi.org/10.1063/1.1542677
  2. R. L. Hoffman, J. Appl. Phys. 95, 5813 (2004). https://doi.org/10.1063/1.1712015
  3. R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves and E. Fortunato, J. Appl. Phys. 101, 044505 (2007). https://doi.org/10.1063/1.2495754
  4. W. J. Park, H. S. Shin, B. D. Ahn, G. H. Kim, S. M. Lee, K. H. Kim and H. J. Kim, Appl. Phys. Lett. 93, 083508 (2008). https://doi.org/10.1063/1.2976309
  5. R. L. Hoffman, Solid-State Electron. 50, 784 (2006). https://doi.org/10.1016/j.sse.2006.03.004
  6. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and C. J. Kim, Appl. Phys. Lett. 93, 033513 (2008). https://doi.org/10.1063/1.2963978
  7. J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun and W. J. Lee, Thin Solid Films 518, 3022 (2010). https://doi.org/10.1016/j.tsf.2009.09.190
  8. J. H. Chung, J. Y. Lee, H. S. Kim, N. W. Jang and J. H. Kim, Thin Solid Films 516, 5597 (2008). https://doi.org/10.1016/j.tsf.2007.07.107
  9. W. H. Jeong, G. H. Kim, H. S. Shin, B. D. Ahn, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon and S. Y. Lee, Appl. Phys. Lett. 96, 093503 (2010). https://doi.org/10.1063/1.3340943
  10. J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim and J. K. Jeong, Adv. Mater. 21, 329 (2009). https://doi.org/10.1002/adma.200802246
  11. G. H. Kim, W. H. Jeong, B. D. Ahn, H. S. Shin, H. J. Kim, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon and S. Y. Lee, Appl. Phys. Lett. 96, 163506 (2010). https://doi.org/10.1063/1.3413939
  12. Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton and D. P. Norton, Appl. Phys. Lett. 84, 3474 (2004). https://doi.org/10.1063/1.1737795
  13. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998). https://doi.org/10.1063/1.121384
  14. J. Chen, W. Z. Shen, N. B. Chen, D. J. Qiu and H. Z. Wu, J. Phys: Condens. Matter 15, L475 (2003). https://doi.org/10.1088/0953-8984/15/30/102
  15. C. Y. Hu, Z. X. Qin, Z. X. Feng, Z. Z. Chen, Z. B. Ding, Z. J. Yang, T. J. Yu, X. D. Hu, S. D. Yao and G. Y. Zhang, Mater. Sci. Eng. B 128, 37 (2006). https://doi.org/10.1016/j.mseb.2005.11.004
  16. Y. Li, R. Deng, B. Yao, C. Xing, D. Wang and T. Wu, Appl. Phys. Lett. 97, 102506 (2010). https://doi.org/10.1063/1.3485058
  17. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, New York, 2006).
  18. K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata and S. Niki, Appl. Phys. Lett. 85, 1374 (2004). https://doi.org/10.1063/1.1784544
  19. K. Uchida and S. Tsuneyuki, Appl. Surf. Sci. 190, 129 (2002). https://doi.org/10.1016/S0169-4332(01)00855-8
  20. K. Remashan, Y. S. Choi, S. J. Park and J. H. Jang, J. Electronchem. Soc. 157, H1121 (2010). https://doi.org/10.1149/1.3502605

Cited by

  1. Mg0.1Zn0.9O/ZnO 활성층 구조의 박막트랜지스터 연구 vol.27, pp.7, 2013, https://doi.org/10.4313/jkem.2014.27.7.472
  2. Compositional tuning of atomic layer deposited MgZnO for thin film transistors vol.105, pp.20, 2013, https://doi.org/10.1063/1.4902389
  3. Low-Voltage MgZnO Thin Film Transistors with an Amorphous Al2 O3 Gate Insulator Grown by Pulsed Laser Deposition vol.215, pp.11, 2013, https://doi.org/10.1002/pssa.201700821