DOI QR코드

DOI QR Code

Enhancement of the Electrical Properties of (Eu,Zn) Co-doped $BiFeO_3$ Thin Films Prepared by Using Chemical Solution Deposition

  • Kim, Youn-Jang (Department of Physics, Changwon National University) ;
  • Kim, Jin Won (Department of Physics, Changwon National University) ;
  • Kim, Hae Jin (Department of Physics, Changwon National University) ;
  • Kim, Sang Su (Department of Physics, Changwon National University)
  • Received : 2012.10.08
  • Accepted : 2013.01.25
  • Published : 2013.04.15

Abstract

We prepared pure $BiFeO_3$ (BFO) and $(Bi_{0.9}Eu_{0.1})(Fe_{0.975}Zn_{0.025})O_{3-{\sigma}}$ (BEFZO) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BEFZO thin film. The leakage current density of the BEFZO thin film was three orders of magnitude lower than that of the pure BFO, $3.93{\times}10^{-6}A/cm^2$ at 100 kV/cm. The remnant polarization ($2P_r$) and the coercive electric field ($2E_c$) of the BEFZO thin film were 42 ${\mu}C/cm^2$ and 898 kV/cm at an applied electric field of 1000 kV/cm and at a frequency of 1 kHz and the values decreased with increasing measurement frequency to 18 ${\mu}C/cm^2$ and 866 kV/cm at 10 kHz, respectively. Also, the fatigue endurances were evaluated at peak voltages of 8 - 10 V after $1.44{\times}10^{10}$ cycles in the BEFZO thin films and were 70~90% of the initial values. We also confirmed that the $2P_r$ was fairly saturated at measurement frequency about 30 kHz for the BEFZO thin film.

Keywords

References

  1. T. Zhao et al., Nat. Mater. 5, 823 (2006). https://doi.org/10.1038/nmat1731
  2. L. W. Martin, Y.-H. Chu and R. Ramesh, Mater. Sci. Eng., R 68, 89 (2010). https://doi.org/10.1016/j.mser.2010.03.001
  3. B. F. Yu, M. Y. Li, J. Wang, L. Pei, D. Y. Guo and X. Z. Zhao, J. Phys. D: Apply. Phys. 41 185401 (2008). https://doi.org/10.1088/0022-3727/41/18/185401
  4. T. Kawae, H. Tsuda, H. Naganuma, S. Yamada, M. Kumeda, S. Okamura and A. Morimoto, Jpn. J. Appl. Phys. 47, 7586 (2008). https://doi.org/10.1143/JJAP.47.7586
  5. D. K. Pradhan, R. N. P. Choudhary, C. Rinaldi and R. S. Katiyar, J. Appl. Phys. 106, 024102 (2009). https://doi.org/10.1063/1.3158121
  6. Z. Q. Hu, M. Y. Li, B. F. Yu, L. Pei, J. Liu, J. Wang and X. Z. Zhao, J. Phys. D: Appl. Phys. 42, 185010 (2009). https://doi.org/10.1088/0022-3727/42/18/185010
  7. B. F. Yu, M. Y. Li, J. Liu, D. Y. Guo, L. Pei and X. Z. Zaho, J. Phys. D: Appl. Phys. 41, 065003 (2008). https://doi.org/10.1088/0022-3727/41/6/065003
  8. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1975).
  9. S. Mukheriee, R. Gupta, A. Garg, V. Bansal and S. Bhargava, J. Appl. Phys. 107, 123535 (2010). https://doi.org/10.1063/1.3436593
  10. I. Vrejoiu, G. L. Rhun, L. Pintilie, D. Hesse, M. Alexe and U. Gosele, Adv. Mater. 18, 1657 (2006). https://doi.org/10.1002/adma.200502711
  11. Z. Hu, Meiya Li, Yang Yu, Jun Liu, Ling Pei, Jing Wang and Xiaolian Liu, Solid State Comm. 150, 1088 (2010). https://doi.org/10.1016/j.ssc.2010.03.015
  12. J. A. Dean, Lange's Handbook of Chemistry, 15th ed. (McGraw-Hill, 1999).
  13. Z. Zhonga and H. Ishiwara, Appl. Phys. Lett. 95, 112902 (2009). https://doi.org/10.1063/1.3231073
  14. C.Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume, T. Horiuchi and S. Sakai, J. Appl. Phys. 99, 054104 (2006). https://doi.org/10.1063/1.2177430
  15. G. D. Hu, X. Ortiz, Cheng, W. B. Wu and C. H. Yang, Appl. Phys. Lett. 91, 232909 (2007). https://doi.org/10.1063/1.2822826
  16. S. K. Singhd, H. Ishiwara, K. Sato and K. Maruyama, J. Appl. Phys. 102, 094109 (2007). https://doi.org/10.1063/1.2812594
  17. H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman. R. R. Das, P. Shafer, Y. C hen, C. T. Nelson, X. Pan, R. Ramesh and C. B. Eom, Adv. Mater. 21, 817 (2009). https://doi.org/10.1002/adma.200800823
  18. T. Rojac, M. Kosec and D. Damjanovic, J. Am. Ceram. Soc. 94. 4108 (2011). https://doi.org/10.1111/j.1551-2916.2011.04861.x
  19. J. F. Ihlefeld, C. M. Folkman, S. H. Baek, G. L. Brennecka, M. C. George. J. F. Carroll III and C. B. Eom, Appl. Phys. Lett. 97, 262904 (2010). https://doi.org/10.1063/1.3533017
  20. Y. J. Kim, H. J. Kim, J. W. Kim, C. M. Raghavan and S. S. Kim, J. Korean Phys. Soc. 61, 434 (2012). https://doi.org/10.3938/jkps.61.434
  21. W. L. Waren, D. Dimos, B. A. Tuttle, R. D. Nasby and G. E. Pike, Appl. Phys. Lett. 65, 1018 (1994). https://doi.org/10.1063/1.112211
  22. S. H. Baek, C. M. Folkman, J. W. Park, S. Lee, C. W. Bark, T. Tybell and C. B. Eom, Adv. Mater. 23, 1621 (2011). https://doi.org/10.1002/adma.201003612

Cited by

  1. 화학 용액 증착법으로 제조한 Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) 박막의 구조와 전기적 특성 vol.31, pp.4, 2018, https://doi.org/10.4313/jkem.2018.31.4.226