DOI QR코드

DOI QR Code

Comparison of Photon Counting and Conventional Scintillation Detectors in a Pinhole SPECT System for Small Animal Imaging: Monte Carlo Simulation Studies

  • Lee, Young-Jin (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Park, Su-Jin (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Lee, Seung-Wan (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Kim, Dae-Hong (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Kim, Ye-Seul (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Kim, Hee-Joung (Department of Radiological Science, College of Health Science, Yonsei University)
  • Received : 2013.01.09
  • Accepted : 2013.03.25
  • Published : 2013.05.15

Abstract

The photon counting detector based on cadmium telluride (CdTe) or cadmium zinc telluride (CZT) is a promising imaging modality that provides many benefits compared to conventional scintillation detectors. By using a pinhole collimator with the photon counting detector, we were able to improve both the spatial resolution and the sensitivity. The purpose of this study was to evaluate the photon counting and conventional scintillation detectors in a pinhole single-photon emission computed tomography (SPECT) system. We designed five pinhole SPECT systems of two types: one type with a CdTe photon counting detector and the other with a conventional NaI(Tl) scintillation detector. We conducted simulation studies and evaluated imaging performance. The results demonstrated that the spatial resolution of the CdTe photon counting detector was 0.38 mm, with a sensitivity 1.40 times greater than that of a conventional NaI(Tl) scintillation detector for the same detector thickness. Also, the average scatter fractions of the CdTe photon counting and the conventional NaI(Tl) scintillation detectors were 1.93% and 2.44%, respectively. In conclusion, we successfully evaluated various pinhole SPECT systems for small animal imaging.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. H. Iida and K. Ogawa, Ann. Nucl. Med. 25, 143 (2011). https://doi.org/10.1007/s12149-010-0441-3
  2. A. D. Guerra and N. Belcari, Nucl. Instr. Meth. A 583, 119 (2007). https://doi.org/10.1016/j.nima.2007.08.187
  3. V. Bom, M. Goorden and F. Beekman, Phys. Med. Biol. 56, 3199 (2011). https://doi.org/10.1088/0031-9155/56/11/003
  4. B. Vandeghinste, J. D. Beenhouwer, R. V. Holen, S. Vandenberghe and S. Staelens, IEEE Nucl. Sci. Symp. Conf. Rec. MIC9.S-319, 2738 (2011).
  5. F. J. Beekman and B. Vastenhouw, Phys. Med. Biol. 49, 4579 (2004). https://doi.org/10.1088/0031-9155/49/19/009
  6. Y. J. Lee, H. J. Ryu, H. M. Cho, S. W. Lee, Y. N. Choi and H. J. Kim, J. Korean Phys. Soc. 60, 862 (2012). https://doi.org/10.3938/jkps.60.862
  7. C. Scheiber and G. C. Giakos, Nucl. Instr. Meth. A 458, 12 (2001). https://doi.org/10.1016/S0168-9002(00)01032-9
  8. L. Verger, M. C. Gentet, L. Gerfault, R. Guillemaud, C. Mestais, O. Monnet, G. Petroz, J. P. Rostaing and J. Rustique, IEEE Trans. Nucl. Sci. 51, 3111 (2004). https://doi.org/10.1109/TNS.2004.839070
  9. S. G. Fritz and P. M. Shikhaliev, Med. Phys. 36, 1098 (2009). https://doi.org/10.1118/1.3085876
  10. G. A. Kastiz, L. R. Furenlid, D. W. Wilson, T. E. Peterson, H. B. Barber and H. H. Barrett, IEEE Trans. Nucl. Sci. 51, 63 (2004). https://doi.org/10.1109/TNS.2004.823337
  11. L. Guerin, L. Verger, V. Rebuffel and O. Monnet, IEEE Trans. Nucl. Sci. 55, 1573 (2008). https://doi.org/10.1109/TNS.2008.924069
  12. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001). https://doi.org/10.1109/23.958705
  13. K. Tsuchiya, I. Takahashi, T. Kawaguchi, K. Yokoi, Y. Morimoto, T. Ishitsu, A. Suzuki, Y. Ueno and K. Kobashi, Ann. Nucl. Med. 24, 301 (2010). https://doi.org/10.1007/s12149-010-0354-1
  14. A. D. Guerra and N. Belcari, Nucl. Instr. Meth. A 583, 119 (2007). https://doi.org/10.1016/j.nima.2007.08.187
  15. K. Ogawa, N. Ohumura, H. Iida, K. Nakamura, T. Nakahara and A. Kubo, Ann. Nucl. Med. 23, 763 (2009). https://doi.org/10.1007/s12149-009-0293-x
  16. K. Ogawa and M. Muraishi, IEEE Trans. Nucl. Sci. 57, 17 (2010). https://doi.org/10.1109/TNS.2009.2034460
  17. D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens and V. Breton, Phys. Med. Biol. 49, 271 (2004). https://doi.org/10.1088/0031-9155/49/2/007
  18. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies and P. M. Bloomfield et al., Phys. Med. Biol. 49, 4543 (2004). https://doi.org/10.1088/0031-9155/49/19/007
  19. D. Lazaro, Z. EI. Bitar, V. Breton, D. Hill and I. Buvat, Phys. Med. Biol. 50, 3739 (2005). https://doi.org/10.1088/0031-9155/50/16/006
  20. I. Buvat and D. Lazaro, Nucl. Instr. Meth. A 569, 323 (2006). https://doi.org/10.1016/j.nima.2006.08.039
  21. C. M. Hubert Chen, S. E. Boggs, A. E. Bolotnikov, W. R. Cook, F. A. Harrison and S. M. Schindler, IEEE Trans. Nucl. Sci. 49, 270 (2002). https://doi.org/10.1109/TNS.2002.998652
  22. G. Pellegrini, M. Maiorino, G. Blanchot, M. Chmeissani, J. Garcia, M. Lozano, R. Martinex, C. Puigdengoles and M. Ullan, Nucl. Instr. Meth. A 573, 137 (2007). https://doi.org/10.1016/j.nima.2006.11.010
  23. R. Jaszczak, J. Li, H. Wang, M. Zalutsky and R. Coleman, Phys. Med. Biol. 39, 425 (1994). https://doi.org/10.1088/0031-9155/39/3/010

Cited by

  1. The effect of high-resolution parallel-hole collimator materials with a pixelated semiconductor SPECT system at equivalent sensitivities: Monte Carlo simulation studies vol.64, pp.7, 2014, https://doi.org/10.3938/jkps.64.1055
  2. Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study vol.65, pp.7, 2013, https://doi.org/10.3938/jkps.65.1149
  3. A Numerical Study of Different Types of Collimators for a High-Resolution Preclinical CdTe Pixelated Semiconductor SPECT System vol.20, pp.6, 2013, https://doi.org/10.3807/josk.2016.20.6.663
  4. Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study vol.51, pp.2, 2013, https://doi.org/10.1016/j.net.2018.10.005
  5. Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system vol.53, pp.7, 2021, https://doi.org/10.1016/j.net.2021.01.011