DOI QR코드

DOI QR Code

A Study on a Production and Processing Technique for a GeSbSe Aspheric Lens with a Mid-infrared Wavelength Band

  • Bae, Dong-Sik (Department of Advanced Chemical and Engineering, Chonnam National University) ;
  • Yeo, Jong-Bin (The Research Institute for Catalysis, Chonnam National University) ;
  • Lee, Hyun-Yong (Faculty of Applied Chemical Engineering, Chonnam National University)
  • Received : 2013.04.17
  • Published : 2013.06.14

Abstract

Chalcogenide glass has superior optical properties in term of its transmittance in the infrared (IR) region transmittance. We have determined the composite formular of $Ge_{0.19}Sb_{0.23}Se_{0.58}$ to be the GeSbSe chalcogenide glass composition appropriate for IR lenses. The optical, structural, thermal and physical properties of the compound were measured by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimeter (DSC), and X-ray computed tomography (X-ray CT) respectively. We recommend that a chalcogenide glass lens for infrared optics applications be fabricated by using diamond turning machining technology in order to lower the production cost and to provide accurate control over the fabrication process.

Keywords

Acknowledgement

Supported by : Chonnam National University

References

  1. D. C. Tran, G. H. Sigel, Jr. and B. Bendow, J. Lightwave Technol. LT-2 (5), 566 (1984).
  2. T. Kanamori, Y. Terunuma, S. Takahashi and T. Miyashita, J. Lightwave Technol. LT-2 (5), 607 (1984).
  3. G. G. Devyatykh and E. M. Dianov, SPIE PROC. 484, 105 (1984). https://doi.org/10.1117/12.943150
  4. D. Rock, Development of Single-Mode Fibers and Coherent Fiber Bundles for CO2 Lasers and Forward-Looking Infrared (FLIR) Systems, paper presented at CLEO; D. C. Tran, G. H. Sigel Jr. and B. Bendow. J. Lightwave Technol. LT-2 (5), 566 (1984).
  5. R. W. Haisty and H. Krebs, J. Non-Cryst. Solids 1, 399 (1969). https://doi.org/10.1016/0022-3093(69)90022-2
  6. J. A. Savage, P. J. Webber and A. M. Pitt, J. Mater. Sci. 13, 859 (1978). https://doi.org/10.1007/BF00570524
  7. B. Zhong, I. Watanabe and T. Shimizu, J. Non-Cryst. Solids 59, 929 (1983).
  8. P. M. Nikolic, S. S. Vujatovic, Li. Milosevic, J. D. Collins and G. A. Gledhill, Solid State Commun. 72, 624 (1989).
  9. R. M. Mehra, A. Kumar and P. C. Mathur, Thin Solid Films 170, 15 (1989). https://doi.org/10.1016/0040-6090(89)90617-2
  10. M. Vlcek, L. Tichy, J. Klikorka and A. Triska, J. Mater. Sci. 24, 2508 (1989).
  11. N. Clavaguera, M. T. Clavaguera-Mora and J. Onrubia, J. Mater. Sci. 20, 3925 (1989).
  12. S. Mahadevan and A. Giridhar, J. Non-Cryst. Solids 143, 52 (1992). https://doi.org/10.1016/S0022-3093(05)80552-6
  13. R. M. Mehra, R. Kumar, P. C. Mathur and K. Shimakawa, Philos. Mag. B 58, 293 (1988). https://doi.org/10.1080/13642818808208471
  14. P. Sikka, Key Eng. Mater. 13-15, 523 (1987). https://doi.org/10.4028/www.scientific.net/KEM.13-15.523
  15. A. S. Maan, A. K. Sharma, D. R. Goyal and A. Kumar, J. Non-Cryst. Solids 104, 273 (1988). https://doi.org/10.1016/0022-3093(88)90398-5
  16. R. Mathur and A. Kumar, Solid State Commun. 61, 785 (1987). https://doi.org/10.1016/0038-1098(87)90478-9
  17. G. Parthasarthy and E. S. R. Gopal, J. Appl. Phys. 62, 2313 (1987). https://doi.org/10.1063/1.339491
  18. K. L. Bhatia, G. Parthasarthy, D. P. Gosain and E. S. R. Gopal, Philos. Mag. Lett. 51, L63 (1985). https://doi.org/10.1080/13642818508243146
  19. A. N. Sreeram, D. R. Swiler and A. K. Varshneya, J. Non-Cryst. Solids 127, 287 (1991). https://doi.org/10.1016/0022-3093(91)90481-K

Cited by

  1. 적외선 광학렌즈 제작을 위한 GeSe의 벌크 제작 및 특성 연구 vol.26, pp.9, 2013, https://doi.org/10.4313/jkem.2013.26.9.641
  2. Evaluations of Sb20Se80-xGex (x = 10, 15, 20, and 25) Glass Stability from Thermal, Structural and Optical Properties for IR Lens Application vol.54, pp.6, 2017, https://doi.org/10.4191/kcers.2017.54.6.08