Preparation of Porous Polyacrylonitrile Nanofibers Membrane for the MF Application

MF 적용을 위한 다공성 PAN 나노섬유막의 제조

  • Ahn, Hyeonryun (Department of Biosystems & Science and Engineering, Seoul National University) ;
  • Jang, Wongi (Department of Chemical System Engineering, Keimyung University) ;
  • Tak, Taemoon (Department of Biosystems & Science and Engineering, Seoul National University) ;
  • Byun, Hongsik (Department of Chemical System Engineering, Keimyung University)
  • 안혜련 (서울대학교 바이오시스템.소재학과) ;
  • 장원기 (계명대학교 화학시스템공학과) ;
  • 탁태문 (서울대학교 바이오시스템.소재학과) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Received : 2012.11.27
  • Accepted : 2013.01.24
  • Published : 2013.04.30

Abstract

Polyancrylonitrile nanofiber membrane (PAM) was prepared by using the electrospinning method with a solution of polyacrylonitrile (PAN) in DMF. The pore-diameter of PAMs and the number of PAM's layer were controlled for the microfiltration (MF) application. In addition, in order to improve the water-flux, AN-PEGMA copolymers have been synthesized via free radical polymerization with poly (ethylene glycol) methyl ether methacrylate and azobisisobutylronitrile (AIBN), and then PAN/AN-PEGMA nanofiber membranes (PAM/APM) were prepared by electrospinning with a mixture of PAN (9 wt%) and AN-PEGMA (3 wt%) in DMF (88 wt%). The prepared membranes were investigated with FT-IR and E.D.S. It was confirmed through scanning electron microscope (SEM), porometer, and porosity analysis that the porous membrane with a uniform diameter (400~600 nm) and a uniform pore characteristics (0.5~0.4 ${\mu}m$) was prepared. For the MF application, water-flux measurements were investigated and then the result was shown that the water permeability value of PAM/APMs introduced AN-PEGMA copolymers was relatively higher than that of the PVdF commercial membrane. From these results, PAN nanofiber membranes prepared by electrospinning could be utilized as a MF membrane.

Polyacrylonitrile (PAN) 기질고분자를 용매인 dimethylformamide (DMF)에 녹인 후 전기방사법을 이용하여 polyacrylonitrile nanofibers membrane (PAM)을 제조하였으며, 정밀여과(microfiltration) 적용을 위해, 제조된 PAM 샘플들의 layer 수를 변화시켜, 기공크기를 조절하였다. 또한, 순수투과도(water-flux) 향상을 위해 poly (ethylene glycol) methyl ether methacrylate와 azobisisobutylronitrile (AIBN)을 이용하여 자유 라디칼 중합(free radical polymerization)을 통해 합성된 AN-PEGMA 공중합체를 PAN과 3:1의 비율로 혼합한 후 위와 같은 방법으로 다공성 막(PAM/APM)을 제조하였으며, FT-IR과 E.D.S 분석을 통해 PAM 샘플과 비교 분석하였다. Scanning Electron Microscope (SEM) 분석과 기공크기, 기공도 실험을 통해 균일한 직경(400~600 nm)과 균일한 기공특성(0.5~0.4 ${\mu}m$)을 가진 다공성 막이 제조되었음을 확인할 수 있었다. 순수투과도 측정을 통해 정밀여과용 막으로의 활용가능성을 조사하였으며, AN-PEGMA 공중합체가 도입된 PAM/APM의 경우 상용막인 polyvinylidenefluoride (PVdF)에 비해 순수투과도가 상대적으로 높은 값을 나타내었다. 위의 결과로부터 전기방사법으로 제조된 PAN 나노섬유막들은 정밀여과용 막으로서 충분한 활용가능성이 있다고 판단된다.

Keywords

References

  1. G. Owen, M. Bandi, J. A. Howell, and S. J. Churchouse, "Economic assessment of membrane processes for and waste water treatment", J. Membr. Sci., 102, 15 (1995).
  2. T. Oe, H. Koide, H. Hirokawa, and K. Okukawa, "Performance of membrane filtration system used for water treatment", Desalination, 106, 107 (1996). https://doi.org/10.1016/S0011-9164(96)00098-7
  3. R. J. Wakeman and C. J. Williams, "Additional techniques to improve microfiltration", Separation and Purification Technology, 26, 3 (2002). https://doi.org/10.1016/S1383-5866(01)00112-5
  4. H. Huang, K. Schwab, and J. G. Jacangelo, "Pretreatment for Low Pressure Membranes in Water Treatment: A Review", Environ. Sci. Technol., 43, 9 (2009).
  5. J. T. Kim, H. Y. Hwang, B. P. Hong, and H. S. Byun, "The Background and Direction of R&D Project for Advanced Technology of Wastewater Treatment and Reuse", Membrane Journal, 21, 3 (2011).
  6. Marcel Mulder, "Basic Principles of Membrane Technology", pp. 12-18, Kluwer Academic Publishers, Netherlands, (1996).
  7. K. Konieczny, M. Bodzek, and M. Rajca, "A coagulation- MF system for water treatment using ceramic membranes", Desalination, 198 (2006).
  8. K. Konieczny and D. Sakol, M. Bodzek, "Efficiency of the hybrid coagulation-ultrafiltration water treatment process with the use of immersed hollow-fiber membranes", Desalination, 198 (2006).
  9. B. J. Cha, S. D. Chi, and J. H. Kim, "Membrane Market for Water Treatment", KIC News, 14, 6 (2011).
  10. N. Chanunpanich. H. S. Byun, and I. K. Kang, "Membrane Morphology: Phase Inversion to Electrospinning", Membrane Journal, 15, 2 (2005).
  11. L. S. Chronakis, "Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review", Journal of Materials Processing Technology, 167 (2005).
  12. S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, "Electronpun nanofibers: solving global issues", Materials Today, 9, 3 (2006).
  13. N. Daels, S. D. Vrieze, I. Sampers, B. Decostere, P. Westbroek, A. Dumoulin, P. Dejans, K. D. Clerck, and S. W. H. Van Hulle, "Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter", Desalination, 275, 1-3 (2011). https://doi.org/10.1016/j.desal.2011.03.010
  14. W. G. Jang, J. Hou, and H. S. Byun, "Preparation and characterization of PVdF nanofiber ion exchange membrane for the PEMFC application", Desalination and Water Treatment, 34 (2011).
  15. http://www.kosen21.org/board/report/board_report_list.jsp, September 14 (2012).
  16. R. Sheikholeslami, "Fouling mitigation in membrane processes", Desalination, 123, 45 (1999). https://doi.org/10.1016/S0011-9164(99)00058-2
  17. http://www.membrane.or.kr/, September 4 (2012).