DOI QR코드

DOI QR Code

Development of Airborne Remote Sensing System for Monitoring Marine Meteorology (Sea Surface Wind and Temperature)

연안 해양기상(해상풍, 수온) 관측을 위한 항공기 원격탐사 시스템

  • Kim, Duk-Jin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Cho, Yang-Ki (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kang, Ki-Mook (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Jin-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Seung-Hee (School of Earth and Environmental Sciences, Seoul National University)
  • 김덕진 (서울대학교 지구환경과학부) ;
  • 조양기 (서울대학교 지구환경과학부) ;
  • 강기묵 (서울대학교 지구환경과학부) ;
  • 김진우 (서울대학교 지구환경과학부) ;
  • 김승희 (서울대학교 지구환경과학부)
  • Received : 2013.01.18
  • Accepted : 2013.01.23
  • Published : 2013.02.28

Abstract

Although space-borne satellites are useful in obtaining information all around the world, they cannot observe at a suitable time and place. In order to overcome these limitations, an airborne remote sensing system was developed in this study. It is composed of a SAR sensor and a thermal infrared sensor. Additionally GPS, IMU, and thermometer/hygrometer were attached to the plane for radiometric and geometric calibration. The brightness of SAR image varies depending on surface roughness, and capillary waves on the sea surface, which are easily generated by sea winds, induce the surface roughness. Thus, sea surface wind can be estimated using the relationship between quantified SAR backscattering coefficient and the sea surface wind. On the other hand, thermal infrared sensor is sensitive to measure object's temperature. Sea surface temperature is obtained from the thermal infrared sensor after correcting the atmospheric effects which are located between sea surface and the sensor. Using these two remote sensing sensors mounted on airplane, four test flights were carried out along the west coast of Korea. The obtained SAR and thermal infrared images have shown that these images were useful enough to monitor coastal environment and estimate marine meteorology data.

인공위성은 넓은 지역에 대한 전 세계의 정보를 획득하는데 유용하지만, 좁은 지역에 대한 적시적소에 촬영하는 데는 한계가 있다. 이러한 단점을 극복하기 위하여 본 연구에서는 항공기 원격탐사 시스템을 구축하였다. 항공기 원격탐사시스템은 SAR센서와 열적외선 센서로 구성되어 있으며, 획득된 자료의 방사 및 기사보정을 위하여 GPS, IMU, 온도/습도계 등도 설치하였다. SAR영상은 표면 거칠기에 따라 민감하게 반응하여 밝기 값이 달라지게 되며, 해양에서는 바람에 의해 쉽게 생성 되는 표면 장력파의 진폭이 이러한 표면 거칠기를 야기한다. 따라서 정량화된 SAR의 후방산란과 해상풍 사이의 관계식을 통해 해상풍 추출이 가능하다. 한편, 열적외선 센서는 물체의 온도를 측정하는데 유용하며, 물체와 센서 사이의 대기에 의한 효과를 보정한 후 수온 추출이 이루어진다. 이 두 센서를 탑재한 항공기로 서해안 일대를 4차례 시험비행을 수행하였으며, 이로부터 획득된 SAR 및 열적외선 영상의 품질이 연안환경 모니터링 및 해양기상 자료 추출에 충분함을 보여주었다.

Keywords

References

  1. Chandrasekhar, S., 1950, Radiative Transfer, Clarendon Press.
  2. Fu, L.L. and B. Holt, 1982, Seasat views oceans and sea ice with synthetic aperture radar, NASA-JPL publication, 81-120.
  3. Kara, A.B., A.J. Wallcraft, and H.E. Hurlburt, 2005, Sea surface temperature sensitivity to water turbidity from simulations of turbid black sea using HYCOM, J. Phys. Oceanogr., 35: 33-54. https://doi.org/10.1175/JPO-2656.1
  4. Kim, D.J., W.M. Moon, and Y.S. Kim, 2010, Application of TerraSAR- X data for emergent oil-spill monitoring, IEEE Trans. Geosci. Remote Sens., 48: 852-863. https://doi.org/10.1109/TGRS.2009.2036253
  5. Price, J.C., 1983, Estimating surface temperatures from satellite thermal infrared data - A simple formulation for the atmospheric effect, Remote sensing of environment, 13: 353-361. https://doi.org/10.1016/0034-4257(83)90036-6
  6. Wolf, P.R. 1983, Elements of photogrammetry, McGraw Hill.
  7. Wu, X. and W.L. Smith, 1997, Emissivity of rough sea surface for 8-13 mm: modeling and verification, Applied optics, 36: 2609−2619. https://doi.org/10.1364/AO.36.002609

Cited by

  1. Seasonal Characteristics of Sea Surface Winds and Significant Wave Heights Observed Marine Meterological Buoys and Lighthouse AWSs near the Korean Peninsula vol.24, pp.3, 2015, https://doi.org/10.5322/JESI.2015.24.3.291
  2. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring vol.15, pp.12, 2015, https://doi.org/10.3390/s151025366