DOI QR코드

DOI QR Code

Statistical Analysis for Fatigue Life Evaluation of Vehicle Muffler

자동차용 머플러의 피로수명평가를 위한 통계적 분석

  • Choi, Ji-Hun (Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Yong-Jun (Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Yoon, Jin-Ho (Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kang, Sung-Su (Dept. of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2012.08.20
  • Accepted : 2012.10.11
  • Published : 2013.03.01

Abstract

In this study, a statistical method for evaluating the fatigue life of a vehicle muffler was used to obtain reliable fatigue data using a limited number of specimens. Cyclic bending tests were conducted using specimens manufactured to be exactly the same as the mufflers installed in cars that are currently in use. To estimate the fatigue life by comparing the data obtained during the fatigue tests, the most suitable probability density function for the normal, lognormal, and Weibull distributions was selected. A goodness-of-fit test was performed on the probability distributions, and then a Weibull distribution using the least square method was selected. By using the selected Weibull distribution, the probability-moment-life curves (P-M-N curve) reflecting the fatigue characteristics were suggested as the data for the reliable design of a muffler.

한정된 수량의 시험편만으로 자동차용 머플러의 신뢰도 높은 내구수명데이터를 얻기 위하여 통계적 피로수명 평가법을 이용하였다. 시험품은 실제 차량에 적용되는 것과 동일하게 제작하였고, 하중제어 반복굽힘 피로시험을 수행하였다. 피로시험을 통해 얻은 데이터를 정규분포, 대수정규분포, 와이블분포로 적용하여 각각의 곡선들을 비교하였으며 와이블분포의 경우 최우추정법, 최소제곱법, 가중치를 적용한 최소제곱법을 이용하여 모수를 각각 추정하였다. 각각의 확률분포에 대해 적합도 검정을 수행하였으며 최종적으로 최소제곱법을 이용한 와이블분포가 선정되었다. 선정된 와이블분포로 피로특성을 반영한 확률-모멘트-수명 곡선(P-M-N Curve)을 제시함으로서 자동차용 머플러의 신뢰성 설계를 위한 기초자료로써 활용이 가능하도록 하였다.

Keywords

References

  1. Kim, G., Kang, S., Lee, Y., Park, S. and Jung, W., 2012, "Study on Durability and Reliability of Strut Type Suspension Noise Based on Experimental Methods," Journal of Mechanical Science and Technology, Vol. 26, No. 1, pp. 21-29. https://doi.org/10.1007/s12206-011-1010-y
  2. Bassa, S. S., Sheth, N. J. and Swanson, S. R., 1973, "Development Random Load Life Prediction Model," Material Research and Standards, 12, Mar.
  3. Kang, K. W., 2011, "Statistical Distribution of Fatigue Life of Composite Materials for Small wind Turbine Blades," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 10, pp. 1281-1289. https://doi.org/10.3795/KSME-A.2011.35.10.1281
  4. Jung, D. W. and Choi, N. S., 2010, "Evaluation of Statistical Fatigue Life of Hybrid Composite Joints in Low-Floor Bus," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 11, pp. 1705-1713. https://doi.org/10.3795/KSME-A.2010.34.11.1705
  5. Jo, Y. J. and Park, Y. C., 2009, "Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 2, pp. 99-107. https://doi.org/10.3795/KSME-A.2009.33.2.99
  6. Jang, S. S. and Kim, S. T., 2000, "A Statistical Analysis on Fatigue Life Distribution in Spheroidal Graphite Cast Iron," Trans. Korean Soc. Mech. Eng. A, Vol. 24, No. 9, pp. 2353-2360.
  7. Bergman, 1986, "Estimation of Weibull Parameters Using a Weight Function," Journal of Materials Science Letters, Vol. 5, No. 6, pp. 611-614. https://doi.org/10.1007/BF01731525
  8. Faucher & Tyson, 1988, "On the Determination of Weibull Parameters," Journal of Materials Science Letters, Vol. 7, No. 11, pp. 1199-1203. https://doi.org/10.1007/BF00722337
  9. Chandrasekhar, 1997, "Estimation of Weibull Parameter with a Modified Weight Function," Journal of Materials Research, Vol. 12, No. 10, pp. 2638-2642. https://doi.org/10.1557/JMR.1997.0351
  10. D'Agostino, R. B. and Stephens, M. A., 1986, "Goodness-of-Fit Techniques," Marcel Dekker, Inc.
  11. Stephens, M. A., 1986, "Tests Based on EDF Statistics," Marcel Dekker, Inc.
  12. Wu, D., Li, Y., Zhang, J., Chang, L., Wu, D., Fang, Z. and Shi, Y., 2001, "Effect of the Number of Testing Specimens and the Estimation Methods on the Weibull Parameters of Solid Catalysts," Chemical Engineering Science, Vol. 56, No. 24, pp. 7035-7044. https://doi.org/10.1016/S0009-2509(01)00340-2
  13. Lewis, G. and Sadhasivini, A., 2004, "Estimation of the Minimum Number of Test Specimens for Fatigue Testing of Acrylic Bone Cement," Biomaterials, Vol. 25, No. 18, pp. 4425-4432 https://doi.org/10.1016/j.biomaterials.2003.11.014
  14. Zhao, Y., Gao, Q. and Wang, J., 2000, "An Approach for Determining an Appropriate Assumed Distribution of Fatigue Life Under Limited Data," Reliability Engineering & System Safety, Vol. 67, No. 1, pp. 1-7. https://doi.org/10.1016/S0951-8320(99)00036-8