DOI QR코드

DOI QR Code

Development of SNP Molecular Markers Related to Seed-hair Characteristic Based on EST Sequences in Carrot

당근 EST 염기서열을 이용한 종자모 형질 관련 SNP 분자표지 개발

  • Oh, Gyu-Dong (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Shim, Eun-Jo (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Jun, Sang-Jin (Breeding Research Institute, Carrotop Seed Co.) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyung Hee University)
  • 오규동 (경희대학교 원예생명공학과) ;
  • 심은조 (경희대학교 원예생명공학과) ;
  • 전상진 ((주)캐로톱씨드 육종연구소) ;
  • 박영두 (경희대학교 원예생명공학과)
  • Received : 2012.09.21
  • Accepted : 2012.10.10
  • Published : 2013.02.28

Abstract

Carrot (Daucus carota L. var. sativa) is one of the most extensively used vegetable crops in the world and a significant source of nutrient because of its high content of ${\beta}$-carotene, well known as the precursor of vitamin A carotenoid. However, seed-hairs generated and elongated from the epidermal cell of seeds inhibit absorption and germination by various factors such as carotol and so on. Accordingly, mechanical hair removal process is essential before commercialization of carrot seeds. Because of this process, producers will have additional losses such as time consuming, manpower, capital and so on. Furthermore, physical damage of seeds causes irregular germination rate. To overcome such cumbersome weaknesses, new breeding program for developing hairless-seed carrot cultivar has been needed and studies for molecular markers related to seed-hair characteristic is needed for a new breeding program. Therefore, in this study, cDNA libraries from seeds of short-hair seed phenotype CT-SMR 616 OP 659-1 line, hairy-seed phenotype CT-SMR 616 OP 677-14 line and short-hair seed phenotype CT-ATR 615 OP 666-13 line, hairy-seed phenotype CT-ATR 615 OP 671-9 were constructed, respectively. Furthermore, 1,248 ESTs in each line, total 4,992 ESTs were sequenced. As a result, 19 SNP sites and 14 SNP sites in each of 2 combinations were confirmed by analyzing these EST sequences from short-hair and hairy-seed lines. Then we designed SNP primer sets from EST sequences of SNP sites for high resolution melting (HRM) analysis. Designed HRM primers were analyzed using hairy seed phenotype CT-SMR 616 OP 1040 line and short-hair seed phenotype CT-SMR 616 OP 1024, 1025, 1026 lines. One set of HRM primers showed specific difference between the melting curves of hairy and short-hair seed phenotype lines. Based on this result, allele-specific (AS) PCR primers were designed for easier selection between hairy-seed carrot and hairless seed carrot. These results of HRM and AS-PCR are expected to be useful in breeding of hairless seed carrot cultivar as a molecular marker.

당근(Daucus carota L. var. sativa)은 세계적으로 광범위하게 사용되는 채소 작물 중 하나로 비타민 A 카로티노이드의 전구체로 잘 알려진 베타카로틴이 다량 함유되어 있어 영양학적으로도 중요한 작물이다. 하지만 당근 종자는 종피의 epidermal 세포에서 연장되는 형태로 생성되는 종자모의 캐로톨 등과 같은 다양한 요인들에 의해 종자의 수분흡수와 발아가 억제된다. 따라서 당근 종자를 상품화하기 이전에 기계적인 종자모 제거과정을 거쳐야 하며 이러한 과정 때문에 생산자는 종자의 물리적인 손실은 물론 시간과 노동력, 그리고 자본금과 같은 추가적인 손실을 감수해야만 한다. 그리고 종자의 물리적인 손실은 종자발아율을 불균일하게 한다. 이러한 문제점들을 보완하기 위해서 무모종자 당근품종 개발을 위한 육종이 필요하게 되었으며 이러한 육종과정을 위해 종자모 형질관련 분자표지에 관한 연구가 필요하게 되었다. 이에 따라, 본 연구에서는 단모종자 표현형 CT-SMR 616 OP 659-1 개체와 유모종자 표현형 CT-SMR 616 OP 677-14 개체, 그리고 단모종자 표현형 CT-ATR 615 OP 666-13 개체와 유모종자 표현형 CT-ATR 615 OP 671-9 개체의 cDNA library를 각각 작성하였다. 또한 각각의 개체별로 1,248개의 EST, 합계 4,992개의 EST를 sequencing하였다. 단모종자와 유모종자 개체의 EST sequence들을 2개의 조합에서 각각 비교 분석하여 19개의 SNP site, 14개의 SNP site를 확인하였으며 이를 바탕으로 SNP site에 대한 High Resolution Melting 분석을 위한 프라이머를 작성하였다. 작성된 HRM 프라이머들은 유모종자 표현형 CT-SMR 616 OP 1040 개체군과 무모종자 표현형 CT-SMR 616 OP 1024, 1025, 1026 개체군을 이용하여 확인하였다. 그 중 한세트의 HRM 프라이머에서 유모 및 단모종자 표현형 개체군들의 melting curve간 특이적 다형성을 확인하였다. 이러한 결과를 바탕으로 유모종자 당근 및 단모종자 당근간의 보다 간편한 선발을 위해 allele-specific PCR 프라이머를 작성하였다. 이러한 HRM 및 AS-PCR 결과는 무모종자 당근육종에 있어 유용한 분자표지로써 사용될 수 있을 것이라 기대된다.

Keywords

References

  1. Ayeh, K.O. 2008. Expressed sequence tags (ESTs) and single nucleotide polymorphisms (SNPs): Emerging molecular marker tools for improving agronomic traits in plant biotechnology. African J. Biotechnol. 7:331-341.
  2. Bajaj, K.L., G. Gurdeep, and B.S. Shkhiuja. 1980. Chemical composition and some plant characteristics in relation to quality of some promising cultivars of carrot (Daucus carota L.). Qual. Plant Plant Foods Hum. Nutr. 30:97-107. https://doi.org/10.1007/BF01099047
  3. Li, X.R., C.Y. Tu, and I.S. Kim. 1999. Effect of presowing seed treatments on germination and seedling emergence of carrot. Int. Agr. Sci. Kangwon Univ. 10:10-17.
  4. Lim, J.M., J.L. Cho, S.M. Kang, and J.S. Kang. 2001. Effect of prepriming on improving germinability of pelleted carrot seeds. Kor. J. Hort. Sci. Technol. 19:511-514.
  5. Menon, A.R.S and Y. Dave. 1989. Micromorphology of hairs and spines on ovary and fruit of Daucus carota L. var. sativa. Bot. Mag. Tokyo. 102:503-509. https://doi.org/10.1007/BF02488432
  6. Mewes, H.W., C. Amid, R. Arnold, D. Frishman, U. Guldener, G. Mannhaupt, M. Munsterkotter, P. Pagel, N. Strack, V. Stumpflen, J. Warfsmann, and A. Ruepp. 2004. MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acid Res. 32:D41-D44. https://doi.org/10.1093/nar/gkh092
  7. Min, T.G. 1992. Effect of density separation after pretreatment on embryo growth and radicle emergence of carrot (Daucus carota L.) seeds. Kor. J. Crop. Sci. 37:134-140.
  8. Myakishev, M.V., Y. Khripin, S. Hu, and D.H. Hamer. 2001. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 11:163-169. https://doi.org/10.1101/gr.157901
  9. Nieuwhof, M. and F. Garristsen. 1984. Inheritance of spine formation on seeds of carrot (Daucus carota L.). Euphytica 33:75-80. https://doi.org/10.1007/BF00022752
  10. Ruepp, A., A. Zollner, D. Maier, K. Albermann, J. Hani, M. Molrejs, I. Tetko, U. Guldener, G. Mannhaupt, M. Munsterkotter, and H.W. Mewes. 2004. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acid Res. 32:5539-5545. https://doi.org/10.1093/nar/gkh894
  11. Salzman, R.A., T. Fujita, K. Zhu-salzman, and P.M. Hasegawa. 1999. An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Mol. Biol. Rep. 17:11-17. https://doi.org/10.1023/A:1007520314478
  12. Ujino-ihara, T., Y. Taguchi, Y. Moriguchi, and Y. Tsumura. 2010. An efficient method for developing SNP markers based on EST data combined with high resolution melting (HRM) analysis. BMC Res. Notes 3:51-55. https://doi.org/10.1186/1756-0500-3-51
  13. Wang, Y.C., C.P. Yang, G.F. Liu, J. Jiang, and J.H. Wu. 2006. Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Sci. 170:28-36. https://doi.org/10.1016/j.plantsci.2005.07.027
  14. Wu, S.B., M.G. Wirthensohn, P. Hunt, J.P. Gibson, and M. Sedgley. 2008. High resolution melting analysis of almond SNPs derived from ESTs. Theor. Appl. Genet. 118:1-14. https://doi.org/10.1007/s00122-008-0870-8
  15. Ye, S., S. Dhillon, X. Ke, A.R. Collins, and I.N.M. Day. 2001. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acid Res. 29:e88. https://doi.org/10.1093/nar/29.17.e88

Cited by

  1. 당근 종모 형질 관련 cDNA Library 작성 및 EST 분석 vol.31, pp.6, 2013, https://doi.org/10.7235/hort.2013.13108
  2. Fine Mapping of the Gene Controlling the Fruit Skin Hairiness of Prunus persica and Its Uses for MAS in Progenies vol.10, pp.7, 2013, https://doi.org/10.3390/plants10071433