DOI QR코드

DOI QR Code

Quantitative evaluation of MRI distortion using orthopedic prosthetic metal

정형보철용 금속을 이용한 자기공명영상왜곡의 정량적 평가

  • Kim, Hyeonggyun (Dept. of Diagnostic Radiology, CHA Gumi Medical Center, CHA University)
  • 김형균 (차 의과학대학교 구미차병원 영상의학과)
  • Received : 2013.01.01
  • Accepted : 2013.02.22
  • Published : 2013.02.28

Abstract

Despite the many advantages of magnetic resonance imaging in orthopedic prosthetic body image distortion to the differences in the magnetic susceptibility occurs. Attached to the phantom and pork produced by the same $65{\times}15{\times}2mm$ stainless steel and titanium specimen examined the relationship between magnetic resonance imaging and phantom images, the signal intensity changes of the subcutaneous tissue, fat-suppressed quantitative assessment of the degree through the length of image distortion and pig bones. Stainless steel to titanium to 2.8 times 4.4 times in the longitudinal direction than in the direction of the height of large image distortion, signal strength is relatively low 58.5%. Normal 56.2% compared to the subcutaneous tissue, fat-suppressed, were stainless steel 16.04%, 54.53% titanium. Experimental results than the diagnostic value of magnetic resonance imaging (MRI) images of stainless steel with a titanium metal if better could see.

자기공명영상은 많은 장점에도 불구하고 체내에 정형보철이 있는 경우 자화율 차이로 영상왜곡이 발생한다. 스테인리스와 티타늄 시험편을 $65{\times}15{\times}2mm$로 동일하게 제작하여 phantom과 돼지고기에 부착 한 후 자기공명영상과의 관계를 알아보았다. phantom 영상을 통해 영상왜곡의 길이와 돼지 뼈를 통한 신호강도의 변화, 피하조직의 지방억제 정도를 정량적으로 평가 하였다. 스테인리스는 티타늄에 비해 길이 방향으로 4.4배, 높이 방향으로 2.8배 영상왜곡이 크며, 신호강도는 58.5%로 상대적으로 낮았다. 피하조직 지방억제는 Normal의 56.2%에 비해 스테인리스는 16.04%, 티타늄은 54.53%로 나타났다. 실험 결과 자기공명영상의 영상학적 진단가치는 스테인리스 보다 티타늄 금속이 부착 된 경우 더 우수한 것을 알 수 있었다.

Keywords

References

  1. S.C. Bushong, Magnetic Resonance Imaging Physical and Biological Principles, pp. 1-59, 1988.
  2. Peter A. Rinck, Timothy E. Southon, Magnetic Resonance in Medicine, 3rd Edition, pp. 5-18, 1993.
  3. Kang Sung Jin, A Study on the Reduction of the Artifacts Due to Orthodontic Devices in Magnetic Resonance Imaging, Department of Medical imaging of Engineering The Graduate School of Bio-Medical Science Korea University, pp. 1-3, 2012.
  4. R. L. Becker, J. F Norfray, G. P Teitelbaum, et al, MR imaging in patients with intracranial aneurysm clips, AJNR, Vol. 9, No. 5, pp. 885-889, 1988
  5. Shellock FG, Morisoli S, Kanal E, MR procedures and biomedical implants, materials, and devices:1993updates. Radiology, Vol. 189, pp. 587-599, 1993. https://doi.org/10.1148/radiology.189.2.8210394
  6. Kim Hyeong Gyun et al, Effect of Metals used in Orthopedic on Magnetic Resonance Imaging I. Journal of the Korean Society of Manufacturing Process Engineers, Vol. 11 No. 4, pp. 46-50, 2012.
  7. Kim Hyeong Gyun et al, Effect of Metals used in Orthopedic on Magnetic Resonance Imaging II. Journal of the Korean Society of Manufacturing Process Engineers, Vol. 11 No. 5, pp. 115-120, 2012.
  8. Kim Hyeong Gyun et al, Effect of Metals used in Orthopedic on Magnetic Resonance Imaging III. Journal of the Korean Society of Manufacturing Process Engineers, Vol. 11 No. 6, pp. 42-47, 2012.
  9. Hong Hyun Sook et al. Artifacts of Biomedical Implants on Magnetic Resonance Imaging.. Korea university Journal Vol. 29, No. 1, pp. 198, 1992.

Cited by

  1. Analysis of the Dental Implants MRI Artifacts by Using the ACR Phantom vol.10, pp.8, 2016, https://doi.org/10.7742/jksr.2016.10.8.629
  2. Influence of Iodinated Contrast Media and Isotope 99mTc on Changes of Signal to Noise Ratio of Magnetic Resonance Imaging vol.46, pp.8, 2015, https://doi.org/10.1007/s00723-015-0695-y