DOI QR코드

DOI QR Code

Estimation of Genetic Parameters for Milk Production Traits in Holstein Dairy Cattle

홀스타인의 유생산형질에 대한 유전모수 추정

  • Cho, Chungil (Animal Genetic Improvement Division, National Institute of Animal Science, R.D.A.) ;
  • Cho, Kwanghyeon (Animal Genetic Improvement Division, National Institute of Animal Science, R.D.A.) ;
  • Choy, Yunho (Animal Genetic Improvement Division, National Institute of Animal Science, R.D.A.) ;
  • Choi, Jaekwan (Animal Genetic Improvement Division, National Institute of Animal Science, R.D.A.) ;
  • Choi, Taejeong (Animal Genetic Improvement Division, National Institute of Animal Science, R.D.A.) ;
  • Park, Byoungho (Animal Genetic Improvement Division, National Institute of Animal Science, R.D.A.) ;
  • Lee, Seungsu (Animal Genetic Improvement Division, National Institute of Animal Science, R.D.A.)
  • Received : 2012.10.18
  • Accepted : 2013.02.07
  • Published : 2013.02.28

Abstract

The purpose of this study was to estimate (co) variance components of three milk production traits for genetic evaluation using a multiple lactation model. Each of the first five lactations was treated as different traits. For the parameter estimation study, a data set was set up including lactations from cows calved from 2001 to 2009. The total number of raw lactation records in first to fifth parities reached 1,416,589. At least 10 cows were required for each contemporary group, herd-year-season effect. Sires with fewer than 10 daughters were discarded. Lactations with 305d milk yield exceeding 15,000 kg were removed. In total, 1,456 sires of cows were remained after all the selection steps. A complete pedigree consisting of 292,382 records was used for the study. A sire model containing herd-year-season, caving age, and sire additive genetic effects was applied to the selected lactation data and pedigree for estimating (co) variance components via VCE. Heritabilities and genetic or residual correlations were then derived from the (co) variance estimates using R package. Genetic correlations between lactations ranged from 0.76 to 0.98 for milk yield, 0.79~1.00 for fat yield, 0.75~1.00 for protein yield. On individual lactation basis, relatively low heritability values were obtained 0.14~0.23, 0.13~0.20 and 0.14~0.19 for milk, fat, and protein yields, respectively. For the combined lactation heritability values were 0.29, 0.28, and 0.26 for milk, fat, and protein yields. The estimated parameters will be used in national genetic evaluations for production traits.

본 연구의 목적은 여러 산차를 이용한 모델을 사용하여 유전평가 분석을 하기위하여 3개의 유량생산 형질에 대한 (공)분산 성분을 추정하고자 하였다. 모수추정을 위한 자료는 2001년부터 2009년까지의 검정자료를 이용하였고 원시자료수는 1,416,589개이며 5개의 산차형질에 대해 각각 다른 형질로 가정하여 추정하였다. 동기그룹 내 10두 이하 및 씨수소의 딸소가 10두 미만인 개체는 삭제를 하였으며 305일 유량생산이 15,000 kg을 초과하는 비유개체에 대하여 사전 데이터 가공을 실시하였다. 혈통파일은 총292,382개의 혈통자료와 1,456두의 씨수소로 구성되어진 혈통자료가 연구에 사용되었다. Sire 모형은 herd-year-season의 동기그룹과 분만월령 그리고 혈통과 5산까지 상가적 유전효과들이 적용되었으며 VCE를 이용하여 유전 (공)분산이 추정되었다. 유전율과 유전상과 그리고 잔차상관은 R 패키지를 이용하여 계산하였다. 유량에 대한 산차간 유전 상관은 0.76에서 0.98였고, 유지방량은 0.79~0.10, 유단백질량은 0.75~1.00로 나타났다. 각 산차별 유량, 유지방량, 유단백질량은 상대적으로 낮은 유전력인 0.14~0.23, 0.13~0.20이 추정되었으며 산차에 가중치로 결합된 유전력은 각 형질에서 0.29, 0.28, 0.26로 나타났다. 본 연구에서 추정된 모수들은 국가단위 유전평가분석에 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. 농협중앙회 젖소개량사업소. 2011. 2011년도 유우군 능력 검정 사업보고서.
  2. Amasaib, E. O., Abu Nikhaila, A. M., Fadel Elseed, A. N. M. A. and Mohamed, H. E. 2008. Effect of Season of Calving and Parity on Some Productive Traits in Pure and Crossbred Cattle in Sudan. Research Journal of Dairy Sciences. 2(1):5-8
  3. Asgari, G. H. 2011. Genetic parameters of milk and fat yield in normal and high yielding dairy cows. 2nd International Conference on Biotechnology and Food Science IPCBEE vol.7
  4. Bulmer, M. G. 1971. The effect of selection on genetic variability. Am. Nat., 105:201-211. https://doi.org/10.1086/282718
  5. Carabano, M. J., Van Vleck, L. Dale, Wiggans, G. R. and Alenda, R. 1989. Estimation of Genetic Parameters for Milk and Fat Yields of Dairy Cattle in Spain and the United States. Faculty Papers and Publications in Animal Science. Paper 131.
  6. Dong, M. G., Van Vleck, L. D. and Wiggans, G. R. 1998. Effects of relationship on estimation of variance component with an animal model and restricted maximum likelihood. J. Dairy Sci., 71:3047-3052.
  7. Kovacs, M. A. and Groeneveld, E. VCE-5 User's Guide and Reference Manual, Version 5.1. Mariensee, Germany: Institute of Animal Husbandry and Animal Behaviour, Federal Research Center of Agriculture; 2003. p. 68.
  8. Lee, D. H., Oh Sang and Whitley, N. C. 2010. Study on Genetic Evaluation for Linear Type Traits in Holstein Cows. Asian-Aust. J. Anim. Sci. 23(1):1-6.
  9. Muir, B. L., Kistemaker, G., Jamrozik, J. and Canavesi, F. 2007. Genetic Parameters for a Multiple-Trait Multiple-Lactation Random Regression Test-Day Model in Italian Holsteins. J. Dairy Sci. 90:1564-1574. https://doi.org/10.3168/jds.S0022-0302(07)71642-9
  10. SAS User's Guide : Statistics, Ver 9.1 Edition. 1999. SAS Inst., Inc., Cary, NC
  11. Zavadilova, L., Jamrozik, J. and Schaeffer, L. R. 2005. Genetic parameters for test-day model with random regressions for production traits of Czech Holstein cattle. Czech J. Anim. Sci., 50(4):142-154.
  12. Interbull. 2012. Description of national genetic evaluation systems for dairy cattle traits as practised in different Interbull member countries. http://www-interbull.slu.se/national_ges_info2/framesida-ges.htm. Accessed Sep. 3, 2012.

Cited by

  1. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value vol.30, pp.3, 2015, https://doi.org/10.5713/ajas.15.0608