DOI QR코드

DOI QR Code

Numerical Analysis for the Effect of Spacer in Reverse Electrodialysis

역전기투석 장치 내 스페이서의 영향에 관한 수치해석적 연구

  • Shin, Dong-Woo (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Hong-Keun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Tae-Hwan (Energy Material and Convergence Research Department, Korea Institute of Energy Research) ;
  • Park, Jong-Soo (Energy Material and Convergence Research Department, Korea Institute of Energy Research) ;
  • Jeon, Dong Hyup (College of Energy and Environment, Dongguk University)
  • 신동우 (서울대학교 기계항공공학부) ;
  • 김홍근 (서울대학교 기계항공공학부) ;
  • 김태환 (한국에너지기술연구원 에너지융합소재연구단) ;
  • 박종수 (한국에너지기술연구원 에너지융합소재연구단) ;
  • 전동협 (동국대학교 에너지환경대학 원자력및에너지공학부)
  • Received : 2012.11.06
  • Accepted : 2012.12.21
  • Published : 2013.03.31

Abstract

In this study, the effects of spacer and variation of spacer height in reverse electrodialysis (RED) on the seawater and ion transport were investigated. A three-dimensional computational fluid dynamics (CFD) simulation for a hexagonal spacer was constructed. The results showed that the swirl in the channel and ion transport rate to the membrane were enhanced at higher Reynolds number, on the other hand, pressure difference between the inlet and outlet was increased. Moreover thicker spacer increased Power number and Sherwood number.

본 연구에서는 역전기투석 장치 내 스페이서(spacer)에 의한 유동변화와 스페이서의 높이변화에 따른 해수의 유동 및 이온전달 영향에 관한 연구를 수행하였다. 육각형 모양의 스페이서에 대해 3차원 전산유체해석을 진행하였다. 모델링을 수행한 결과, 레이놀즈수(Reynolds number)가 커짐에 따라 스월량(swirl)이 커지며 단위시간당 해수의 이온이 멤브레인(membrane)으로 전달되는 양이 늘어나지만, 반면에 입출구의 압력차도 증가하였다. 또한 스페이서가 두꺼울수록 파워수(Power number)와 셔우드수(Sherwood number)가 증가하였다.

Keywords

References

  1. Pattle, R. E., "Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile," Nature, 174, 660 (1954). https://doi.org/10.1038/174660a0
  2. Kim, Y., Walker, W., and Lawler, D. F., "Electrodialysis with Spacers: Effects of Variation and Correlation of Boundary Layer Thickness," Desalination, 274, 54-63 (2011). https://doi.org/10.1016/j.desal.2011.01.076
  3. Schwinge J., Wiley, D. E., and Fletcher, D. F., "A CFD Study of Unsteady Flow in Narrow Spacer-filled Channels for Spiral-Wound Membrane Modules," Desalination, 146, 195-201 (2002). https://doi.org/10.1016/S0011-9164(02)00470-8
  4. Ahmad, A. L., and Lau, K. K., "Impact of Different Spacer Filaments Geometries on 2D Unsteady Hydrodynamics and Concentration Polarization in Spiral Wound Membrane Channel," J. Membr. Sci., 286(1-2), 77-92 (2006). https://doi.org/10.1016/j.memsci.2006.09.018
  5. Shakaib, M., Hasani, S. M. F., and Mahmood, M., "CFD Modeling for Flow and Mass Transfer in Spacer-obstructed Membrane Feed Channels," J. Membr. Sci., 326(2), 270-284 (2009). https://doi.org/10.1016/j.memsci.2008.09.052
  6. Kim, K. S., Ryoo, W., Chun, M. S., Chung, G. Y., and Lee, S. O., "Transport Analysis in Reverse Electrodialysis with Pulsatile Flows for Enhanced Power Generation," Korean. J. Chem. Eng., 29(2), 162-168 (2012). https://doi.org/10.1007/s11814-011-0198-y
  7. Li, F., Meindersma, W., de Haan, A. B., and Reith, T., "Optimization of Commercial Net Spacers in Spiral Wound Membrane Modules," J. Membr. Sci., 208, 289-302 (2002). https://doi.org/10.1016/S0376-7388(02)00307-1

Cited by

  1. Theoretical and Computation Analysis on the Pressure Drop in the Cyclone Dust Collector vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.263
  2. Effect of Seawater/Fresh Water Flow Rates on Power Density of Reverse Electrodialysis vol.36, pp.9, 2014, https://doi.org/10.4491/KSEE.2014.36.9.624
  3. 역전기투석용 이온교환막의 연구동향 및 전망 vol.27, pp.2, 2013, https://doi.org/10.14579/membrane_journal.2017.27.2.109