DOI QR코드

DOI QR Code

A systematic study of the Polygonum amphibium L. complex (Polygonaceae) based on chloroplast DNA sequences

엽록체 DNA 염기서열에 근거한 물여뀌 종집단(마디풀과)의 분류학적 연구

  • ;
  • ;
  • 박진희 (서원대학교 생물교육과) ;
  • 박종욱 (서울대학교 생명과학부)
  • Received : 2013.01.28
  • Accepted : 2013.03.11
  • Published : 2013.03.29

Abstract

The Polygonum amphibium complex (Poygonaceae) is a highly polymorphic taxon that can grow in aquatic environments as well as in moist terrestrial habitats. Aquatic and terrestrial plants of the P. amphibium complex vary significantly in morphology and exhibit very complicated patterns of morphological variation, resulting in the description of numerous infra-specific taxa. Principal components analysis of 107 individuals of the P. amphibium complex from Asia and North America using 11 morphological characters showed that the aquatic plants can be discerned from the terrestrial plants by leaf size, shape, and petiole length. In contrast, both aquatic and terrestrial plants collected from the same population or locality shared identical sequences in the matK, psbA-trnH IGS, rbcL-accD IGS and trnL-trnF regions of the chloroplast DNA (cpDNA), suggesting that aquatic and terrestrial forms of the P. amphibium complex are not genetically diverged; morphological differences between the two forms are probably due to the differences in environmental conditions of the habitats. In addition, results from the morphological analysis and the maximum parsimony analysis of the cpDNA data set revealed that the plants from Asia including Korea, Japan, China, Mongolia and Russia Far East are diverged from those in North America and Europe, suggesting that the Asian populations should be recognized as a distinct variety, P. amphibium var. amurense Korsh.

마디풀과의 물여뀌 종집단(Polygonum amphibium L. complex)은 육상 및 수중 환경 모두에 서식할 수 있는 분류군으로, 서식 환경에 따라 다양한 형태 변이를 나타내어 현재까지 많은 분류군들이 기재되어 왔다. 아시아 및 북미산 107개체로부터 측정한 11개 형태형질을 사용하여 주성분분석을 수행한 결과, 본 종집단에서 존재하는 수생형 및 육생형 개체들은 모든 지역집단에서 잎의 형태 및 크기, 엽병의 길이 등에 의해 서로 구분되는 것으로 나타났다. 그러나, 동일 개체군 또는 동일 지역내에서 채집된 수생형과 육생형 개체들은 엽록체 DNA 4개 구간(matK, psbA-trnH IGS, rbcL-accD IGS, trnL-trnF)에서 완전히 동일한 염기서열을 공유하는 것으로 밝혀져 유전적으로는 분기되지 않은 것으로 추정되며, 따라서 본 종집단에서 나타나는 생육형간의 형태적 차이는 서식지 환경에 따른 개체 변이인 것으로 판단된다. 형태분석 및 엽록체 4구간 염기서열 유합자료의 계통분석 결과, 한국, 일본, 중국, 몽골, 극동 러시아 지역 등에 분포하는 아시아산 개체들은 북미지역집단 개체들 및 유럽의 영국산 개체와 형태적, 유전적으로 뚜렷이 구분되는 것으로 밝혀졌으며, 따라서 한반도산 개체들을 포함하는 아시아 지역집단 개체들은 P. amphibium의 하나의 변종(P. amphibium var. amurense Korsh.)으로 인식하는 것이 타당한 것으로 판단된다.

Keywords

References

  1. Coleman, N. 1874. Catalogue of Flowering Plants of the Southern Peninsula of Michigan, with a Few of the Cryptogamia. Dygert Bro's & Co., Grand Rapids.
  2. Felsenstein, J. 1985. Confidence limits on phylogeny: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  3. Forbes, F. B. and W. B. Hemsley. 1891. An enumeration of all the plants known from China proper, Formosa, Hainan, Corea, the Luchu Archipelago, and the Island of Hongkong, together with their distribution and synonymy. Journal of the Linnean Society. Botany 26: 317-396. https://doi.org/10.1111/j.1095-8339.1891.tb00107.x
  4. Gray, A. 1873. Miscellaneous botanical notes and characters. Proceedings of the American Academy of Arts and Sciences 8: 282-294.
  5. Hara, H. 1952. Contributions to the study of variations in the Japanese plants closely related to those of Europe or North America, Part 1. Journal of the Faculty of Science, University of Tokyo. Section III. Botany 6: 29-96.
  6. Hinds, H. R. and C. C. Freeman. 2005. Persicaria (Linnaeus) Miller. In Flora of North America North of Mexico. Vol. 5. Flora of North America Editorial Committee (ed.), Oxford University Press, New York. Pp. 574-594.
  7. Hulten, O. E. G. 1971. The circumpolar plants. II. Dicotyledons. Kungliga Svenska Vetenskapsakademiens Handlingar 13: 1-463.
  8. Kim, S.-T. and M. J. Donoghue. 2008a. Molecular phylogeny of Persicaria (Persicarieae, Polygonaceae). Systematic Botany 33: 77-86. https://doi.org/10.1600/036364408783887302
  9. Kim, S.-T. and M. J. Donoghue. 2008b. Incongruence between cpDNA and nrITS trees indicates extensive hybridization within Eupersicaria (Polygonaceae). American Journal of Botany 95: 1122-1135. https://doi.org/10.3732/ajb.0700008
  10. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120. https://doi.org/10.1007/BF01731581
  11. Komarov, V. L. 1936. Polygonum L. In Flora of the U. S. S. R. Vol. 5. Komarov, V. L. (ed.), Izdatel'stvo Akademii Nauk SSSR, Moscow-Leningrad. Translated from Russian by N. Landau, 1970. Israel Program for Scientific Translations, Jerusalem and the Smithsonian Institution, Washington, D. C. Pp. 594-701.
  12. Korshinsky, S. 1892. Plantas amurenses in itinere anni 1891 collectas enumerat novasque species describit. Trudy Imperatorskago S.-Peterburgskago Botaniceskago Sada 12: 287-431.
  13. Kwak, M.-H. 2001. A Systematic Study on Polygonum sect. Persicaria (Polygonaceae) in Korea. M. S. dissertation, Seoul National University, Seoul. (in Korean)
  14. Lee, W. T. 1996. Lineamenta Florae Koreae. Academy Publishing Co., Seoul. (in Korean)
  15. Lee, Y. J. 1996. Polygonaceae. In Flora Coreana. Vol. 1. Im, R. J. (ed.), Science and Technology Publishing House, Pyongyang. Pp. 270-342. (in Korean)
  16. Lee, Y. N. 2006. New Flora of Korea. Vol. I. Kyo-Hak Publishing Co., Seoul. (in Korean)
  17. Li, A.-J., B. Bojian, A. E. Grabovskaya-Borodina, S.-P. Hong, J. McNeill, S. L. Mosyakin, H. Ohba and C.-W. Park. 2003. Polygonaceae. In Flora of China. Vol. 5. Wu, Z. and P. H. Raven (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. Pp. 277-350.
  18. Linnaeus, C. 1753. Species Plantarum. Ed. 1. Vol. 1. Impensis Laurentii Salvii, Stockholm.
  19. Maire, R. 1961. Flore de l'Afrique Du Nord. Vol. VII. Dicotyledonae. Paul Lechevalier, Paris.
  20. Michaux, F. A. 1803. Flora Boreali-Americana. Paris.
  21. Mitchell, R. S. 1968. Variation in the Polygonum amphibium Complex and its Taxonomic Significance. University of California Press, Berkeley and Los Angeles.
  22. Mitchell, R. S. 1971a. A guide to aquatic smartweeds (Polygonum) of the United States. Virginia Water Resources Research Center Bulletin 41: 1-52.
  23. Mitchell, R. S. 1971b. Comparative leaf structure of aquatic Polygonum species. American Journal of Botany 58: 342-360. https://doi.org/10.2307/2441415
  24. Mitchell, R. S. 1976. Submergence experiments on nine species of semi-aquatic Polygonum. American Journal of Botany 63: 1158-1165. https://doi.org/10.2307/2441661
  25. Mitchell, R. S. and J. K. Dean. 1978. Polygonaceae (buckwheat family) of New York State. New York State Museum Bulletin 431: 1-79.
  26. Moench, C. 1777. Enumeratio Plantarum Indigenarum Hassiae. Kassel. Pp. 188-193.
  27. Nieuwland, J. A. 1912. Our amphibious persicarias. American Midland Naturalist 2: 201-247. https://doi.org/10.2307/2992884
  28. Park, C.-W. and S. P. Hong. 2007. Polygonaceae. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul. Pp. 334-360.
  29. Partridge. J. W. 2001. Persicaria amphibia (L.) Gray (Polygonum amphibium L.). Journal of Ecology 89: 487-501. https://doi.org/10.1046/j.1365-2745.2001.00571.x
  30. SAS Institute Inc. 2011. SAS(R) 9.3 for Windows. SAS Institute Inc., Cary.
  31. Simmons, M. P. and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analysis. Systematics Biology 49: 369-381. https://doi.org/10.1093/sysbio/49.2.369
  32. Sojak, J. 1974. Bemerkungen zur Gattung Truellum Houtt. (Polygonaceae). Preslia 46: 139-156.
  33. Stanford, E. E. 1925a. The amphibious group of Polygonum, subgenus Persicaria. I. Adaptaion in Polygonum amphibium L. Rhodora 27: 109-112.
  34. Stanford, E. E. 1925b. The amphibious group of Polygonum, subgenus Persicaria. II. The American amphibious persicarias. Rhodora 27: 125-130, 146-152, 156-166.
  35. Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods), version 4.0b 10. Sinauer Associates, Sunderland.
  36. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  37. Voroshilov, V. N. 1966. Flora Sovetskogo Dal'nego Vostoka. Nauka, Moscow. (in Russian)
  38. Webb, D. A. 1993. Polygonaceae. In Flora Europaea. Vol. 1. Tutin, T. G., N. A. Burges, A. O. Chater, J. R. Edmondson, V. H. Heywood, D. M. Moore, D. H. Valentine, S. M. Walters and D. A. Webb (eds.), Cambridge University Press, Cambridge. Pp. 91-108.
  39. Werle, E., C. Schneider, M. Renner, M. Volker and W. Fiehn. 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22: 4354-4355. https://doi.org/10.1093/nar/22.20.4354
  40. Willdenow, C. L. 1809. Enumeratio Plantarum Horti Regii Botanici Berolinensis. Taberna Libraria Scholae Realis, Berlin.
  41. Yonekura, K. 2006. Persicaria Mill. In Flora of Japan. Vol. IIa. Iwatsuki K., D. E. Boufford and H. Ohba (eds.), Kodansha Ltd., Tokyo. Pp. 148-174.

Cited by

  1. Melanogenesis Inhibitory Activity of Epicatechin-3-O-Gallate Isolated from Polygonum amphibium L. vol.49, pp.1, 2013, https://doi.org/10.48022/mbl.2010.10012