DOI QR코드

DOI QR Code

Synthesis and Optical Properties of CaMoO4:RE3+ (RE=Eu, Dy) Phosphors

CaMoO4:RE3+ (RE=Eu, Dy) 형광체의 제조와 광학 특성

  • Cho, Shinho (Department of Materials Science and Engineering, Silla University)
  • Received : 2013.02.06
  • Accepted : 2013.03.22
  • Published : 2013.03.30

Abstract

Rare earth ions, either $Eu^{3+}$ or $Dy^{3+}$-doped $CaMoO_4$ phosphors were synthesized by using the solid-state reaction method. The crystalline structure of all the phosphor powders, irrespective of the type and concentration of activator ions, was found to be a tetragonal system with the main diffraction peak at (112) plane. For $Eu^{3+}$-doped $CaMoO_4$ phosphors, the grain particles showed an increasing tendency and the pebble-like patterns with a very homogeneous size distribution in the range of 0.01~0.10 mol of $Eu^{3+}$ ions concentration, and the excitation spectra were composed of a broad band centered at 311 nm and weak multiline peaked in the range of 360~470 nm. The dominant emission spectrum was the strong red emission centered at 618 nm due to the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions. For $Dy^{3+}$-doped $CaMoO_4$ powders, excitation spectra showed a charge transfer band centered at 303 nm and relatively weak bands resulting from the transitions of $Dy^{3+}$ ions and the main yellow emission spectrum was observed at 578 nm, which was assigned to the $^4F_{9/2}{\rightarrow}^7H_{13/2}$ transition of $Dy^{3+}$ ions.

희토류 이온 $Eu^{3+}$$Dy^{3+}$가 각각 도핑된 $CaMoO_4$ 광체 분말을 고상반응법으로 합성하였다. 모든 형광체 분말의 결정 구조는 활성제 이온의 종류와 농도비에 관계없이 주 회절 피크(112)를 갖는 정방 정계이었다. $Eu^{3+}$ 이온이 도핑된 형광체의 경우에, $Eu^{3+}$ 이온의 농도가 0.01~0.10 mol 영역에서 결정 입자의 크기는 전반적으로 증가하였고, 비교적 균일한 크기 분포를 가지면서 조약돌 형태를 나타내었으며, 흡광 스펙트럼은 311 nm를 정점으로 넓게 퍼져있는 전하 전달 밴드와 파장 영역 360~470nm에서 약한 피크를 갖는 다수의 흡수선이 관측되었으며, 주 발광 스펙트럼은 $Eu^{3+}$ 이온의 $^5D_0{\rightarrow}^7F_2$ 전이에 의한 618 nm에 피크를 갖는 강한 적색 발광이었다. $Dy^{3+}$ 이온이 도핑된 분말의 경우에, 흡광 스펙트럼은 303 nm에 피크를 갖는 전하 전달 밴드와 상대적으로 세기가 약한 다수의 $Dy^{3+}$ 이온의 전이 신호가 발생하였으며, 주 발광 스펙트럼은 $^4F_{9/2}{\rightarrow}^7H_{13/2}$ 전이에 의한 578 nm에 피크를 갖는 황색 발광 스펙트럼이 관측되었다.

Keywords

References

  1. I. Bavykina, G. Angloher, D. Hauff, M. Kiefer, F. Petricca, and F. Probst, Opt. Mater. 31, 1381 (2009). https://doi.org/10.1016/j.optmat.2008.11.003
  2. C. Cui, J. Bi, and D. Gao, Appl. Surf. Sci. 255, 3463 (2008). https://doi.org/10.1016/j.apsusc.2008.07.166
  3. C. S. Lim, Mater. Res. Bull. 47, 4220 (2012). https://doi.org/10.1016/j.materresbull.2012.09.029
  4. X. Ju, X. Li, Y. Yang, W. Li, C. Tao, and W. Feng, J. Solid State Chem. 187, 109 (2012). https://doi.org/10.1016/j.jssc.2011.12.042
  5. F. Kang, Y. Hu, H. Wu, G. Ju, Z. Mu, and N. Li, J. Rare Earth. 29, 837 (2011). https://doi.org/10.1016/S1002-0721(10)60552-2
  6. E. Cavalli, F. Angiuli, P. Boutinaub, and R. Mahiou, J. Solid State Chem. 185, 136 (2012). https://doi.org/10.1016/j.jssc.2011.11.004
  7. P. Yang, C. Li, W. Wang, Z. Quan, S. Gai, and J. Lin, J. Solid State Chem. 182, 2510 (2009). https://doi.org/10.1016/j.jssc.2009.07.009
  8. Y. Yang, X. Li, W. Feng, W. Yang, W. Li, and C. Tao, J. Alloy. Compd. 509, 845 (2011). https://doi.org/10.1016/j.jallcom.2010.09.106
  9. J. H. Ryu, J. W. Yoon, C. S. Lim, W. C. Oh, and K. B. Shim, J. Alloy. Compd. 390, 245 (2005). https://doi.org/10.1016/j.jallcom.2004.07.064
  10. Z. J. Zhang, H. H. Chen, X. X. Yang, and J. T. Zhao, Mat. Sci. Eng. B, 145, 34 (2007). https://doi.org/10.1016/j.mseb.2007.09.091
  11. Y. Wang, J. Ma, J. Tao, X. Zhu, J. Zhou, Z. Zhao, L. Xie, and H. Tian, Ceram. Int. 33, 693 (2007). https://doi.org/10.1016/j.ceramint.2005.11.003
  12. M. J. Kim and Y. D. Huh, Opt. Mater. 35, 263 (2012). https://doi.org/10.1016/j.optmat.2012.08.012
  13. T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangrat, and S. Thongtem, J. Alloy. Compd. 506, 475 (2010). https://doi.org/10.1016/j.jallcom.2010.07.033
  14. F. W. Kang, Y. H. Hu, H. Y. Wu, and G. F. Ju, Chin. Phys. Lett. 28, 107201 (2011). https://doi.org/10.1088/0256-307X/28/10/107201
  15. L. Guan, G. Jia, B. Yang, X. Li, L. Jin, Z. Yang, and G. Fu, J. Rare Earth 29, 540 (2011). https://doi.org/10.1016/S1002-0721(10)60494-2
  16. J. B. Gruber, U. Vetter, T. Taniguchi, G. W. Burdick, H. Hofsass, S. Chandra, and D. K. Sardar, J. Appl. Phys. 110, 023104 (2011). https://doi.org/10.1063/1.3609076
  17. J. Zhang, Y. Wang, Z. Zhang, Z. Wang, and B. Liu, Mater. Lett. 62, 202 (2008). https://doi.org/10.1016/j.matlet.2007.04.101
  18. I. Sabikoglu, J. Alloy Compd. 556, 135 (2013). https://doi.org/10.1016/j.jallcom.2012.12.114
  19. M. Nazarov and D. Y. Noh, J. Rare Earth. 28, 1 (2010).

Cited by

  1. Synthesis and Emission Properties of Dy3+-doped BaMoO4Phosphors vol.22, pp.4, 2013, https://doi.org/10.5757/JKVS.2013.22.4.181
  2. Photoluminescence Properties of CaAl2O4:RE3+(RE = Tb, Dy) Phosphors vol.26, pp.3, 2016, https://doi.org/10.3740/MRSK.2016.26.3.143
  3. Synthesis and Photoluminescence Properties of Dy3+- and Eu3+-codoped CaMoO4Phosphors vol.48, pp.3, 2015, https://doi.org/10.5695/JKISE.2015.48.3.82