DOI QR코드

DOI QR Code

Optimal Spray Time, Interval and Number of Preventive Fungicides for the Control of Fruit Rots of Green and Gold Kiwifruit Cultivars

그린키위와 골드키위 과실무름병 예방약제의 적정 살포시기, 간격 및 횟수

  • Kim, Gyoung Hee (Department of Plant Medicine, Sunchon National University) ;
  • Lee, Young Sun (Department of Biology, Sunchon National University) ;
  • Jung, Jae Sung (Department of Biology, Sunchon National University) ;
  • Hur, Jae-Seoun (Department of Environmental Education, Sunchon National University) ;
  • Koh, Young Jin (Department of Plant Medicine, Sunchon National University)
  • Received : 2012.10.30
  • Accepted : 2013.02.05
  • Published : 2013.03.31

Abstract

Optimal spray time, interval and number of preventive fungicides against fruit rots of kiwifruit were investigated at the orchard which both green kiwifruit cultivar 'Hayward' and gold kiwifruit cultivar 'Hort16A' are cultivating side by side during 2009 and 2010 growing seasons in Jeju island, Korea. The highest control efficiency was obtained from benomyl WP and followed by thiophanate-methyl WP and carbendazim+diethofencarb WP. The control efficacies of the fungicides were much higher when applied onto the kiwifruit canopy after the flowering time than before the flowering time but thereafter their control efficiencies were decreased drastically according to delays of spray timing. With increasing spray numbers of the fungicides, the control efficacy increased. However, optimal spray time, interval and number of the preventive fungicides for the effective control of fruit rots of kiwifruit were determined as 4 time-spray schedule with 2-week-interval just after the flowering time on both 'Hayward' and 'Hort16A' cultivars.

그린키위 품종 'Hayward'와 골드키위 품종 'Hort16A'가 같은 과수원에서 나란히 재배되고 있는 제주도 서귀포시 성산읍 신산리에 있는 키위 재배농가 포장에서 2009년과 2010년 국내에서 키위 과실연부병(무름병) 방제약제로 등록되어 있는 살균제인 베노밀 수화제 및 지오판 수화제와 키위 재배농가에서 관행적으로 많이 사용하는 카벤다짐 디에토벤카브 수화제의 적정 살포시기, 살포간격 및 살포횟수를 조사하였다. 약제간 방제효과는 베노밀 수화제, 티오파네이트메틸 수화제, 카벤다짐 디에토펜카브 수화제 순이었다. 개화 전부터 약제를 살포하는 것보다 수정 후 약제를 살포하는 것이 방제효과가 높았으나 수정 후 약제살포하는 시기가 늦어질수록 방제효과는 낮아졌다. 약제살포 횟수가 증가함에 따라 방제효과는 증가하는 경향이었으나 'Hayward'와 'Hort16A' 모두에서 과실무름병 방제를 위한 예방약제의 적정 살포시기, 살포간격 및 살포횟수는 수정 후 2주일 간격 4회 처리로 판단된다.

Keywords

References

  1. Hawthorne, B. T., Rees-George, J. and Samuels, G. J. 1982. Fungi associated with leaf spots and post-harvest fruit rots of kiwifruit (Actinidia chinensis) in New Zealand. New Zealand J. Botany 20: 143-150. https://doi.org/10.1080/0028825X.1982.10428835
  2. Hawthorne, B. T. and Reid, M. S. 1982. Possibility for fungicidal control of kiwifruit fungal storage rot. New Zealand J. Exp. Agric. 10: 333-336. https://doi.org/10.1080/03015521.1982.10427893
  3. Koh, Y. J., Lee, J. G., Hur, J.-S. and Jung, J. S. 2003a. Incidences and causal agents of postharvest fruit rots in kiwifruits in Korea. Res. Plant Dis. 9: 196-200. (In Korean) https://doi.org/10.5423/RPD.2003.9.4.196
  4. Koh, Y. J., Lee, J. G., Hur, J.-S., Park, D. M., Jung, J. S. and Yu, Y. M. 2003b. Optimum spray program of preventive fungicides for the control of postharvest fruit rots of kiwifruit. Res. Plant Dis. 9: 205-208. (In Korean) https://doi.org/10.5423/RPD.2003.9.4.205
  5. Koh, Y. J., Lee, J. G., Lee, D. H. and Hur, J.-S. 2003c. Botryosphaeria dothidea, the causal organism of ripe rot of kiwifruit (Actinidia deliciosa) in Korea. Plant Pathology J. 19: 227-230. https://doi.org/10.5423/PPJ.2003.19.5.227
  6. Koh, Y. J., Hur, J.-S. and Jung, J. S. 2005. Postharvest fruit rots of kiwifruit (Actinidia deliciosa) in Korea. N. Z. J. Crop Hort. Sci. 33: 303-310. https://doi.org/10.1080/01140671.2005.9514363
  7. Korea Crop Protection Association. 2012. Guideline of Crop Protection Materials. Korea Crop Protection Association. 1351 pp. (In Korean)
  8. Lee, J. G., Lee, D. H., Park, S. Y., Hur, J.-S. and Koh, Y. J. 2001. First report of Diaporthe actinideae, the causal organism of stem-end rot of kiwifruit in Korea. Plant Patholology J. 17: 110-113.
  9. Manning, M. A., Olsen, T. L. and Johnston, P. R. 2003. Fungi associated with fruit rots of Actinidia chinensis 'Hort16A' in New Zealand. N. Z. J. Crop Hort. Sci. 31: 315-324. https://doi.org/10.1080/01140671.2003.9514267
  10. Pennycook, S. R. 1981. Ripe rot of kiwifruit caused by Botryosphaeria dothidea. Orchardist of New Zealand 54: 392-394.
  11. Sommer, N. F. and Beraha, L. 1975. Diaporthe actinidiae, a new species causing stem-end rot of Chinese gooseberry fruits. Mycologia 67: 650-653. https://doi.org/10.2307/3758400

Cited by

  1. First Report of Freesia sneak virus in Freesia spp. in Korea vol.19, pp.4, 2013, https://doi.org/10.5423/RPD.2013.19.4.313
  2. Improvement of Control Efficacy of Mancozeb Wettable Powder against Citrus Melanose by Mixing with Paraffin Oil vol.20, pp.3, 2014, https://doi.org/10.5423/RPD.2014.20.3.196
  3. Comparison of Antioxidant and Nitrite Scavenging Activities of Different Colored Kiwis Cultivated in Korea vol.30, pp.2, 2015, https://doi.org/10.7318/KJFC/2015.30.2.220
  4. Effect of spent mushroom substrates on Phythopthora Blight disease and growth promotion of pepper vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.16
  5. Development of PCR Diagnosis System for Plant Quarantine Seed-borne Wheat Streak Mosaic Virus vol.49, pp.2, 2013, https://doi.org/10.7845/kjm.2013.3013
  6. Monitoring of Pesticide Residues and Risk Assessment in Some Fruits on the Market in Incheon, Korea vol.33, pp.2, 2014, https://doi.org/10.5338/KJEA.2014.33.2.111
  7. Development and Practical Use of RT-PCR for Seed-transmitted Prune dwarf virus in Quarantine vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.10.2013.0099
  8. Changes in the physicochemical quality, functional properties, and actinidin content of kiwifruit (Actinidia chinensis) during postharvest storage vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.291