DOI QR코드

DOI QR Code

Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria

길항세균을 이용한 상추 균핵병의 생물학적 방제

  • Chon, Bong-Goan (Department of Environmental Horticulture, The University of Seoul) ;
  • Park, Suji (Department of Environmental Horticulture, The University of Seoul) ;
  • Kim, Jin-Won (Department of Environmental Horticulture, The University of Seoul)
  • 전봉관 (서울시립대학교 환경원예학과) ;
  • 박수지 (서울시립대학교 환경원예학과) ;
  • 김진원 (서울시립대학교 환경원예학과)
  • Received : 2013.01.17
  • Accepted : 2013.02.07
  • Published : 2013.03.31

Abstract

To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0-100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6) and B. cereus (C210) showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.

상추 균핵병균에 대하여 길항력을 나타내는 세균을 분리하기 위해 2007년부터 2008년에 걸쳐 초봄에 경기도 남양주시 관내 상추 시설재배지에서 균핵병이 발병한 포장의 토양을 수집하였다. 수집한 토양을 희석평판법을 이용하여 총 196개의 세균을 분리하였고, 분리한 세균을 실험실에서 균핵병균(Sclerotinia sclerotiorum)과의 대치배양을 통해 균사생장억제율이 80% 내외로 우수한 길항력을 나타내는 26개 균주를 선발하였다. 선발된 26개 균주를 16S rDNA염기서열분석으로 동정한 결과 Bacillus megaterium, B. cereus, B. muralis, B. velezensis, Arthrobacter nicotianae, A. oryzae, Pseudomonas fuscovaginae, P. flavescens, Stenotrophomonas maltophilia, Sphingobacterium faecium으로 동정되었다. 길항세균의 균사생장억제율이 높게 나타낸 10개 균주를 대상으로 여름철 포트실험을 통해 균핵 생존에 미치는 영향을 조사한 결과 B. cereus(C210)와 B. megaterium(DK6)이 각각 20%와 35%의 균핵 생존율을 나타냈다. 겨울철에 온실 내에서 포트실험을 통해 상추 균핵병에 대해 방제효과를 조사한 결과 대조구가 80%의 발병율을 나타냈으나, 26개 균주 중 9개 균주가 20% 정도의 발병율을 나타내 향후 상추 균핵병의 생물적 방제를 위한 길항세균으로서의 활용가치가 기대된다.

Keywords

References

  1. Abawi, G. S. and Grogan, R. G. 1975. Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum. Phytopathology 65: 300-309. https://doi.org/10.1094/Phyto-65-300
  2. Bardin, S. D. and Huang, H. C. 2001. Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol. 23: 88-98. https://doi.org/10.1080/07060660109506914
  3. Chang, S. W. and Kim, S. K. 2003. First report of Sclerotinia rot caused by Sclerotinia sclerotiorum on some vegetable crops in Korea. Plant Pathology J. 19: 79-84. https://doi.org/10.5423/PPJ.2003.19.2.079
  4. Chumthong, A., Kanjanamaneesathian, M., Pengnoo, A. and Wiwattanapatapee, R. 2008. Water-soluble granules containing Bacillus megaterium for biological control of rice sheath blight: formulation, bacterial viability and efficacy testing. World J. Microbiol. Biotechnol. 24: 2499-2507. https://doi.org/10.1007/s11274-008-9774-7
  5. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  7. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S. and Savchuka, S. C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37: 955-964. https://doi.org/10.1016/j.soilbio.2004.10.021
  8. Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Bio. 20: 406-416. https://doi.org/10.1093/sysbio/20.4.406
  9. Handelsman, J., Raffel, S., Mester, E. H., Wunderlich, L. and Grau, C. R. 1990. Biological control of damping-off of alfalfa seedling with Bacillus cereus UW85. Appl. Environ. Microbiol. 56: 713-718.
  10. Hwang, J. Y., Shim, C. K., Ryu, K. Y., Choi, D. H. and Jee, H. J. 2006. Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as biological control agents against sclerotinia rot of lettuce. Res. Plant Dis. 12: 254-259. (In Korean) https://doi.org/10.5423/RPD.2006.12.3.254
  11. Jukes, T. and Cantor, C. 1969. Evolution of protein molecules in HN Munro, ed. Mammalian protein metabolism. Academic Press, New York, pp. 21-132.
  12. Kim, H. W., Lee, K. Y., Baek, J. W., Kim, H. J., Park, J. Y., Lee, J. W., Jung, S. J. and Moon, B. J. 2004. Isolationj and identification of antagonistic bacterium active against Sclerotinia sclerotiorum causing sclerotinia rot on crisphead lettuce. Res. Plant Dis. 12: 254-259. (In Korean)
  13. Kim, K. C. 1976. The effect of ray on sclerotia formation of sclerotium disease. Korean J. Plant Protect. 15: 223-243. (In Korean)
  14. Kim, W. G. and Cho, W. D. 2002. Occurrence of Sclerotinia rot on composite vegetable crops and the causal Sclerotinia spp. Mycobiology 30: 41-46. https://doi.org/10.4489/MYCO.2002.30.1.041
  15. Morrissey, R. F., Dungan, E. P. and Koth, J. S. 1976. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol. Biochem. 8: 23-28. https://doi.org/10.1016/0038-0717(76)90016-X
  16. Omar, I., O'Neill, T. M. and Rossall, S. 2006. Biological control of fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol. 55: 92-99. https://doi.org/10.1111/j.1365-3059.2005.01315.x
  17. Onaran, A. and Yanar, Y. 2011. Screening bacterial species for antagonistic activities against the Sclerotinia sclerotiorum (Lib.) De Bary causal agent of cucumber white mold disease. Afr. J. Biotechnol. 10: 2223-2229.
  18. Padgham, J. L. and Sikora, R. A. 2007. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot. 26: 971-977. https://doi.org/10.1016/j.cropro.2006.09.004
  19. Purdy, L. H. 1979. Sclerotinia sclerotiorum : History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69: 875-880. https://doi.org/10.1094/Phyto-69-875
  20. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Bio. Evol. 4: 406-425.
  21. Sang, M. K., Kim, J. D., Kim, B. S. and Kim, K. D. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101: 666-678. https://doi.org/10.1094/PHYTO-08-10-0224
  22. Saravanan, T., Muthusamy, M. and Marimuthu, T. 2003. Development of integrated approach to manage the fusarial wilt of banana. Crop Prot. 22: 1117-1123. https://doi.org/10.1016/S0261-2194(03)00146-7
  23. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., Ho, H., Clardy, J. and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023-2030.
  24. Stabb, E. V., Jacobson, L. M. and Handelsman, J. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soil. Appl. Environ. Microbiol. 60: 4404-4412.
  25. Subbarao, K. V. 1998. Progress toward integrated management of lettuce drop. Plant Dis. 82: 1068-1078. https://doi.org/10.1094/PDIS.1998.82.10.1068
  26. Whipps, J. M., Budge, S. P., McClement, S. and Pink, D. A. C. 2002. A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 108: 373-378. https://doi.org/10.1023/A:1015637018474
  27. Zheng, X. Y. and Sinclair, J. B. 2000. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45: 223-243. https://doi.org/10.1023/A:1009998304177

Cited by

  1. Selection of Bacillus amyloliquefaciens M27 for Biocontrol on Lettuce Sclerotinia Rot vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.180
  2. Biological Control of Lettuce Sclerotinia Rot by Bacillus subtilis GG95 vol.42, pp.3, 2014, https://doi.org/10.4489/KJM.2014.42.3.225