DOI QR코드

DOI QR Code

Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT

SWAT과 MODSIM-DSS 모형을 연계한 금강유역의 농업용수 공급능력 평가

  • 안소라 (건국대학교 사회환경시스템공학과) ;
  • 박근애 (워싱턴대학교 사회환경공학과) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • Received : 2012.07.26
  • Accepted : 2013.02.13
  • Published : 2013.03.30

Abstract

This study is to evaluate agricultural water supply capacity in Geum river basin (9,865 $km^2$), one of the 5 big river basin of South Korea using MODSIM-DSS (MODified SIMyld-Decision Support System) model. The model is a generalized river basin decision support system and network flow model developed at Colorado State University designed specifically to meet the growing demands and pressures on river basin management. The model was established by dividing the basin into 14 subbasins and the irrigation facilities viz. agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped and networked within each subbasin and networked between subbasins including municipal and industrial water supplies. To prepare the inflows to agricultural reservoirs and multipurpose dams, the Soil and Water Assessment Tool (SWAT) was calibrated using 6 years (2005-2010) observed dam inflow and storage data. By MODSIM run for 8 years from 2004 to 2011, the agricultural water shortage had occurred during the drought years of 2006, 2008, and 2009. The agricultural water shortage could be calculated as 282 $10^6m^3$, 286 $10^6m^3$, and 329 $10^6m^3$ respectively.

본 연구에서는 SWAT 모형과 MODSIM-DSS 모형을 이용하여 금강유역(9,865 $km^2$)의 농업용수 공급능력을 평가하고자 하였다. 하천유역 네트워크 물수지 모형인 MODSIM-DSS를 이용하여 금강유역을 14개의 소유역으로 구분하고 다목적댐과 농업용 수리시설을 고려한 물수지 네트워크를 소유역별로 구성하여 물수지 분석을 수행하였다. MODSIM-DSS의 유역별 유입량(공급량) 자료는 SWAT 모형의 소유역별 유출결과를 사용하였다. SWAT 모형의 신뢰성 있는 유출량 보정을 위해 금강유역 내 위치하는 2개의 다목적댐(용담, 대청)의 실측 방류량을 이용하여 댐 운영모의를 고려하여 모형의 보정(2005~2007)과 검증(2008~2010)을 실시하였다. 이후 MODSIM-DSS를 이용하여 8개년(2004~2011) 동안의 물수지 분석을 수행한 결과 과거 실제로 가뭄이 발생했던 기간인 2006년, 2008년, 2009년에 농업용수 부족량이 평년에 비해 많이 발생하는 것으로 나타났으며, 부족량은 각각 282 $10^6m^3$, 286 $10^6m^3$, 329 $10^6m^3$로 분석되었다. 유역평균 농업용수 공급능력이 86.4%인데 비해 2006년, 2008년, 2009년에 각각 81.6%, 81.5%, 78.5%로 농업용수 공급능력이 떨어지는 것을 알 수 있었다.

Keywords

References

  1. Ministry of Construction & Transportation (2006). Water Vision 2020 (in Korean).
  2. Ministry of Construction & Transportation (2006). Geum River Basin Survey Report (in Korean).
  3. Kim, S. J., Kim, B. S., Jun, H. D., Kim, H. S. (2010). "The Evaluation of Climate Change Impacts on the Water Scarcity of the Han River Basin in South Korea Using High Resolution RCM Data." Journal of Korea Water Resources Association, Vol. 43, No. 3, pp. 295-308 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.3.295
  4. Nam, W. H., Kim, T. G., Choi, J. Y., Lee, J. J. (2012). "Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods." Journal of Korea Society of Agricultural Engineers, Vol. 54, No. 2, pp. 37-46 (in Korean). https://doi.org/10.5389/KSAE.2012.54.2.037
  5. Ahn, S. J., Choi, B. M., Kwark, H. G., Kim, H. H. (2006). "An Application of River Basin Network Flow Model for Optimum Water Allocation Planning." Conference on Korea Water Resources Association, pp. 365∼369 (in Korean).
  6. Ahn, S. R., Park, G. A., Shin, Y. H., Kim, S. J. (2009). "Assessment of the Potential Water Supply Rate of Agricultural Irrigation Facilities Using MODSIM - For Geum River Basin." Journal of Korea Water Resources Association, Vol. 42, No. 10, pp. 825-843 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.10.825
  7. Yoo, J. H. (2005). "Suggestion of the Water Budget Analysis Method by MODSIM for the Assessment of the Water Supply Reliability." Journal of Korea Society of Civil Engineers, Vol. 25, No. 1B, pp. 9-17 (in Korean).
  8. Lee, G. M., Yoon, S. Y., Kim, H. J. (1998). "Water Balance Analysis of Watershed Using Network Flow Model." Conference on Korea Water Resources Association, pp. 97-102 (in Korean).
  9. Lee, G. M., Yi, J. E., Shim, S. J., Ko, S. K. (1999). "Water Recources Evaluation using Network Optimization Model." Journal of Korea Water Resources Association, Vol. 32, No. 2, pp. 143-152 (in Korean).
  10. Cheong, T. S., Kang, S. U., Ko, I. H., Hwang, M. H. (2007). "Development and Validation of KModSim for the Decision Support System in Geum River Basin." Journal of Korea Society of Civil Engineers, Vol. 27, No. 3B, pp. 319∼329 (in Korean).
  11. Cha, K. U., Cheong, T. S., Ko, I. H. (2007). "Validation of the Surface-Ground Waters Interaction and Water Supplying to Upper Region of Geum River Basin by Optimal Method for Drought Season." Journal of Korea Society of Civil Engineers, Vol. 27, No. 5B, pp. 507∼513 (in Korean).
  12. Choi, S. J., Lee, D. R., Moon, J. W., Kang, S. K. (2010). "Application of K-WEAP (Korea-Integrated Water Resources Evaluation and Planning Model." Journal of Korea Water Resources Association, Vol. 43, No. 7, pp. 265-633 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.7.625
  13. K-water (2010). Dam Operation Manual (in Korean).
  14. K-water (2009). Assessment of Climate Change Impact on Agricultural Water (in Korean).
  15. Arnold, J. G., and Allen, P. M. (1996). "Estimating Hydrologic Budgets for Three Illinois Watersheds." Journal of Hydrology, Vol. 176, No. 1, pp. 57-77. https://doi.org/10.1016/0022-1694(95)02782-3
  16. Faux, J. C., Labadie, J. W., and Lazaro, R. C. (1986). "Improving Performance of Irrigation/Hydro Projects." Journal of Water Resources Planning and Management. Vol. 112, No. 2, pp. 205-224. https://doi.org/10.1061/(ASCE)0733-9496(1986)112:2(205)
  17. Fredericks, J. W., Labadie, J. W., and Altenhofen, J. M. (1998). "Decision Support System for Conjunctive Stream-aquifer Management." Journal of Water Resources Planning and Management. Vol. 124, No. 2, pp. 69-78. https://doi.org/10.1061/(ASCE)0733-9496(1998)124:2(69)
  18. Joh. H. K., Lee. J. W., Park. M. J., Shin. H. J., Yi. J. E., Kim. G. S., Srinivasan. R., and Kim, S. J (2011). "Assessing climate change impact on hydrological components of a small forest watershed through SWAT calibration of evapotranspiration and soil moisture." ASABE. Vol. 54, No. 5, pp. 1773-1782. https://doi.org/10.13031/2013.39844
  19. Miller. S. A., Johnson, G. S., Cosgrove, D. M., and Larson, R. (2003). "Regional scale modeling of surface and groundwater interaction in the Snake River Basin." Journal of the American Water Resources Association. Vol. 39, No. 3, pp. 517-528. https://doi.org/10.1111/j.1752-1688.2003.tb03673.x
  20. Neitsch, S .L., Arnold, J. G. Kiniry, J. R. and Williams, J. R. (2001). "Soil and Water Assessment Tool; the theoretical documentation." U.S Agricultural Research Service, pp. 340-367.

Cited by

  1. Assessing drought threats to agricultural water supplies under climate change by combining the SWAT and MODSIM models for the Geum River basin, South Korea vol.61, pp.15, 2016, https://doi.org/10.1080/02626667.2015.1112905
  2. Development of Operation Rules in Agricultural Reservoirs using Real-Time Water Level and Irrigation Vulnerability Index vol.55, pp.6, 2013, https://doi.org/10.5389/KSAE.2013.55.6.077
  3. Large Scale SWAT Watershed Modeling Considering Multi-purpose Dams and Multi-function Weirs Operation - For Namhan River Basin - vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.021