DOI QR코드

DOI QR Code

Development of Miniature Cone and Characteristics of Cone Tip Resistance in Centrifuge Model Tests

원심모형실험용 소형 콘 개발 및 콘 선단저항치 특성에 관한 연구

  • Received : 2012.09.13
  • Accepted : 2013.02.15
  • Published : 2013.03.30

Abstract

The standard CPT(Cone Penetration Test), which can be easily performed to investigate in-situ soil engineering properties, has been widely used. CPT are also widely being utilized in centrifuge model tests. In this study, a miniature cone with 10mm diameter was developed and its applicability in the centrifuge was evaluated. The developed miniature cone was equipped with a four degree-of-freedom in-flight robot. A series of cone penetration tests was performed under four centrifuge acceleration levels. As results, the cone resistances measured at the same confining stress within shallow penetration depth were affected by the centrifugal accelerations. The critical depth was proportional to the cone diameter and relative density. Cone resistances results below the critical depth and soil parameters obtained from the laboratory tests were compared with those by previously proposed empirical relations.

현장지반의 공학적 특성을 파악하기 위한 콘 관입시험(Cone Penetration Test; CPT)은 원지반의 연속적인 강도 특성을 분석하여 다양한 지반변수를 손쉽게 획득할 수 있다는 점에서 널리 활용되고 있으며, 원심모형실험에서도 널리 활용되고 있다. 본 연구에서는 원심모형실험에서 콘선단저항치를 계측할 수 있는 직경이 10 mm인 소형 콘을 개발하고 원심모형실험에서의 적용성을 평가하였다. 개발된 콘으로 4자유도 로봇을 활용하여 원심모형 가속 상태에서 콘 관입시험을 수행하였다. 이 때, 원심가속도 수준을 4회 변화시켜 다양한 유효응력상태에서 콘 관입시험을 실험을 수행하였다. 그 결과, 얕은 관입깊이의 동일한 유효응력에서 콘 선단저항치는 g-level에 영향을 받으며, 선단저항치가 임계 깊이 도달하는 깊이는 g-level과 상대밀도가 커질수록 깊어짐을 확인하였다. 또한, 각 실험에서 임계 깊이에 도달한 선단저항치와 실내실험에서 획득한 지반물성을 이용하여 기존 경험식과 비교하였다.

Keywords

References

  1. KSF-2312(2011). "Standard test method for soil compaction using a rammer".
  2. American Society for Testing and Materials(ASTM)(2000a). "Standard test methods for laboratory compaction characteristics of soil using modified effort," ASTM D-1557, West Conshohoken, Pa.
  3. American Society for Testing and Materials(ASTM)(2002). "Standard test method for direct shear test of soils under consolidated drained conditions," ASTM D-3080, West Conshohoken, Pa.
  4. American Society for Testing and Materials(ASTM)(2002), "Standard test method for minimum index density and unit weight of soils and calculation of relative density," ASTM D-4254, West Conshohoken, Pa.
  5. Balachowski, L.(2007). "Size effect in centrifuge cone penetration tests, Archives of Hydro-Engineering and Environmental Mechanics," Archives of Hydro-Engineering and Environmental Mechanics, Vol. 54, No. 3, pp. 161-181.
  6. Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., Pasqualini, E.(1981). "Cone resistance of a dry medium sand," 10 th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Vol. 2, pp. 427-438.
  7. Biarez, J. and Gresillon, J.M.(1972). "Essais et suggestions pour le calcul de la force portante des pieux en milieu pulverulent," Geotechnique, Vol. 22, No. 2, pp. 433-450. https://doi.org/10.1680/geot.1972.22.3.433
  8. Bolton, M. D., Gui, M. W. and Phillips, R.(1993). "Review of miniature soil probes for model tests," Proc. 11th South East Asia Geotech. Conf., Singapore, pp. 85-91.
  9. Bolton, M. D., Gui, M. W., Garnier, J., Corte, J. F., Bagge, G., Laue, R.(1999). "Centrifuge cone penetration test in sand," Geotechnique, Vol. 49, No. 4, pp. 542-552
  10. De Lima D. C. and Tumay M.T.(1991). "Scale effects in cone penetration tests," Geotechnical special publication of ASCE, F. G. Mclean, ed., No. 27, pp. 38-51.
  11. Durgunoglu, H.T. and Mitchell, J.K.(1975). "Static penetration resistance of soils: I-analyses, II-evaluation of theory and implications for practice," Proceedings of the ASCES pecialty Conference on In-Situ Measurement of Soil Properties, Vol. I, pp. 151-179.
  12. Jamiolkowsk,i M., Ladd, C. C., Germaine, J. T., Lancellotta, R. (1985). "New developments in field and laboratory testing of soils," Proceeding of the international conference on soil mechanics and foundation engineering, Vol. 1, pp. 57-154.
  13. Kim, D.S., Kim, N.R., Choo, Y.W, Cho, G.C.(2013). "A Newly Developed State-of-the-Art Geotechnical Centrifuge in Korea," KSCE Journal of Civil Engineering, Vol. 17, No. 1, pp. 77-84. https://doi.org/10.1007/s12205-013-1350-5
  14. Le Gall, Y.(1966). Contribution a l'etude de la force portante de fondations circulaires peu profondes, Ph.D dissertation, University of Grenoble.
  15. Madiai, C and Simoni, G.(2004). "Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy," Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization, pp. 1687-1694.
  16. Meyerhof, G. G.(1974). "Penetration testing outside Europe, General Report," Proceedings European Symposium on Penetration Testing, Stockholm, Sweden, Vol. 2.1, June.
  17. Meyerhof, G.G.(1976). "Bearing Capacity and Settlement of Pile Foundation," 11th Terzaghi Lecture, Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, GT3, pp. 197-228.
  18. Puech Alain and Foray Pierre(2002). "Refine model for interpreting shallow penetration CPTs in Sands," Proceeding of the 2002 Offshore Technology Conference, Houston, Texas USA.
  19. Robertson P. K. and Campanella, R.G.(1983). "Interpretation of cone penetration tests. Part I: Sand," Canadian Geotechnical Journal, Vol. 20, pp. 718-733. https://doi.org/10.1139/t83-078
  20. Sharp M. K., Dobry R. and Phillips R.(2010). "CPT-based evaluation of liquefaction and lateral spreading in centrifuge," Journal of Geotechnical and Geoenvironmental Engineering-ASCE, Vol. 136, No. 10, pp. 1334-1346. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000338
  21. Tufenkjian, M. R., Yee, E. and Tompson, D. J.(2005). "Shallow penetration resistance of a minicone in sand," Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka.
  22. Vesic, A.S. (1972). "Expension of Cavities in Infinite Soil Mass," Journal of Geotechnical and Geoenvironmental Engineering- ASCE, Vol. 123, No. 8, pp. 344-354.
  23. Vesic, A.S.(1972). "Expansion of cavities in infinite soil mass," Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. 3, pp. 265-290.

Cited by

  1. Development of Electrical Resistivity Survey System for Geotechnical Centrifuge Modeling vol.30, pp.10, 2014, https://doi.org/10.7843/kgs.2014.30.10.19