DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Chloroform Extract from Potentilla chinensis

딱지꽃 (Potentilla chinensis) 추출물의 항염증 효과

  • Received : 2013.01.14
  • Accepted : 2013.02.24
  • Published : 2013.02.27

Abstract

In this study, we investigated the anti-inflammation effect of Potentilla chinensis (PC) on Raw264.7 macrophage cells. Ethanol extract of PC decreased the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells. Ethanol extract was fractioned by n-hexane, chloroform, ethyl acetate, n-butanol, water and each fraction was tested for inhibitory effects on inflammation. Among the sequential solvent fractions, PC chloroform extracts (50, 100, 300, and 500 ${\mu}g/mL$) significantly suppressed LPS-stimulated production of NO. During the entire experimental period, 200 and 300 ${\mu}g/mL$ of PC chloroform extracts had no cytotoxicity. LPS-induced NO and prostaglandin $E_2$ ($PGE_2$) production were inhibited by PC chloroform extracts up to 50% and 90% of these productions, respectively. PC chloroform extracts reduced the expression of iNOS and COX-2 gene. These results suggest that PC chloroform extracts exhibit strong effects of anti-inflammation and can be a potential candidate in the treatment of acute and chronic inflammatory diseases.

Keywords

References

  1. Jew, S. S., O. N. Bae, and J. H. Chung (2003) Anti-inflammatory inflammatory effects of asiaticoside on inducible nitric oxide synthase and cyclooxygenase-2 in RAW264.7 cell line. J. Toxicol. Pub Health 19: 33.
  2. Lee, D. E., J. R. Lee, T. W. Kim, Y. K. Kwon, S. H. Byun, S. W. Shin, S. I. Suh, T. K. Kwon, J. S. Byun, and S.C. Kim (2005) Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNFF-${\alpha}$, IL-1${\beta}$‚ and COX-2 expression by flower and whole plant of Lonicera japonica. Korean J. Oriental Physiology & Pathology 19: 481.
  3. Cheon, Y. P., M. L. Mollah, C. H. Park, J. H. Hong, G. D. Lee, J. C. Song, and K. S. Kim (2009) Inhibition effects of water extract of Bulnesia sarmienti on inflammatory responce in LPS-induced RAW 264.7cell line. J. Life Science 19: 479. https://doi.org/10.5352/JLS.2009.19.4.479
  4. Tsao, L. T., C. Y. Lee, L. J. Huang, S. C. Kuo, and J. P. Wang (2002) Inhibition of lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages by a synthetic carbazole, LCY-2-CHO. Biochem. Pharmacol. 63: 1961-1968. https://doi.org/10.1016/S0006-2952(02)01023-7
  5. Vodovotz, Y., D. Russell, Q. W. Xie, C. Bogdan, and C. Nathan (1995) Vesicle membrane association of nitric oxide synthase in primary mouse macrophage. J. Immunol. 154: 2914-2925.
  6. Lowenstein, C. J., E. W. Alley, P. Raval, A. M. Snowman, S. H. Synder, S. W. Russell, and W. J. Murphy (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc. Natl. Acad. Sci. USA 90: 9730-9734. https://doi.org/10.1073/pnas.90.20.9730
  7. Chabrier, P. E. and M. Auguest (1999) Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell. Mol. Life Sci. 55: 1029-1035. https://doi.org/10.1007/s000180050353
  8. Teresa, D. W., S. Tamir, H. Ji, J. S. Wishnok, and S. R. Tannenbaum (1995) Nitric Oxide Induces Oxidative Damage in Addition to Deamination in Macrophage DNA. Chem. Res. Toxicol. 8: 473-477. https://doi.org/10.1021/tx00045a020
  9. Szab, C., B. Zingarelli, M. O'Connor, and A. L. Salzman (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA 93: 1753-1758. https://doi.org/10.1073/pnas.93.5.1753
  10. Chung, T. H. (1955) Korean flora. pp 315. Shizisa, Seoul, Korea.
  11. Zhen, L., T. Zhang, L. Ye, and Y. Jia (2004) Protective effects of the ethanolic extract from potentilla chinensis on mice acute hepatic injury induced by carbon tetrachloride. Liaoning Journal of Traditional Chinese Medicine 31: 422-423.
  12. Tomczyk, M. and K. P. Latte (2009) Potentilla-A review of its phytochemical and pharmacological profile. J. Ethnopharm. 122:184-204. https://doi.org/10.1016/j.jep.2008.12.022
  13. Je, J. Y., P. J. Park, E. K. Kim, and C. B. Ahn (2009) Antioxidant and angiotensin I converting enzyme inhibitory activity of Bambusae caulis in liquamen. Food. Chem. 113: 932-935. https://doi.org/10.1016/j.foodchem.2008.08.022
  14. Reissig, J. L., J. L. Strominger, and L. F. Leloir (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217: 959-966.
  15. Kim, J. Y., K. S. Jung, and H. G. Jeong (2004) Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS. Lett. 569: 321-326. https://doi.org/10.1016/j.febslet.2004.05.070
  16. Santos-Gomes, P. C., R. M. Seabra, P. B. Andrade, and M. Fernandes-Ferreira (2003) Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage(Salvia officinalis L.). J. Plant. Physiol. 160: 1025-1032. https://doi.org/10.1078/0176-1617-00831
  17. Tesuka, Y., S. Irikawa, T. Kaneko, A.H. Banskota, T. Nagaoka, Q. Xiong, K. Hase, and S. Kadota (2001) Screening of Chinese herval drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol. 77: 209-217. https://doi.org/10.1016/S0378-8741(01)00300-2
  18. Weisz A., I. Cicatiello, and H. Esumi (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon, bacterial lipopolysaccharide, and NG-monomethyl-L- arginine. J. Biol.Chem. 316: 209-215.

Cited by

  1. Isolation and Identification of Major Component from Roots of Potentilla chinensis vol.59, pp.1, 2016, https://doi.org/10.3839/jabc.2016.002