DOI QR코드

DOI QR Code

Electrical Insulation Breakdown Strength in Epoxy/Spherical Alumina Composites for HV Insulation

  • Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
  • Received : 2013.03.12
  • Accepted : 2013.03.15
  • Published : 2013.04.25

Abstract

In order to develop high voltage (HV) insulation materials, epoxy/spherical alumina composites with two different particle sizes (in ${\mu}m$) were prepared and a dynamic mechanical analysis (DMA) and electrical insulation breakdown strength test were carried out in sphere-sphere electrodes and the data were estimated using Weibull statistical analysis. Alumina content varied from 50 to 70 wt%. The electrical insulation breakdown strength for epoxy/alumina (50 wt%) was 44.0 kV/1 mm and this value decreased with increasing alumina content. The effects of insulation thickness and alumina particle size on the insulation breakdown strength were also studied. The insulation thickness varied from 1 mm to 3 mm, and the particle sizes were 7.3 or $40.3{\mu}m$.

Keywords

References

  1. R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007) [DOI: http://dx.doi.org/10.1016/ j.msea.2006.09.077].
  2. N. Hayakawa, H. Maeda, S. Chigusa and H. Okubo, Cryogenics, 40, 167 (2000) [DOI: http://dx.doi.org/10.1016/s0011- 2275(00)00024-2].
  3. G. Iyer, R. S. Gorur, R. Richert, A. Krivda and L. E. Schmidt, IEEE Trans. Dielectr. Electr. Insul., 18, 659 (2011) [DOI: http://dx.doi.org/10.1109/TDEI. 2011.5931050].
  4. P. O.Henk, T. W. Kortsen and T. Kvarts, High Perform. Polym., 11, 281 (1999) [DOI: http://dx.doi.org/10.1088/0954- 0083/11/3/304].
  5. M. Ehsani, Z. Farhadinejad, S. Moemen-bellah, S. M. Bagher alavi, M. M. S. Shrazi and H. Borsi, 26th Internal Power System Conference, Tehran, Iran, 11-E-CAM-2359 (2011).
  6. P. Bajaj, N. K. Jha and A. Kumar, J. Appl. Polym. Sci., 56, 1339 (1995) [DOI: http://dx.doi.org/10.1002/app.1995.070561015].
  7. Y. Xu, D. D. L. Chung and C. Mroz, Composites: Part A, 32, 1749 (2001) [DOI: http://dx.doi.org/10.1016/S1359- 835X(01)00023-9].
  8. A. A. Wazzan, H. A. Al-Turaif and A. F. Abdelkader, Polymer- Plastics Technology and Engineering, 45, 1155 (2006) [DOI: http://dx.doi.org/10.1080/03602550600887285].
  9. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 13, 319 (2006) [DOI: http://dx.doi.org/10.1109/TDEI.2006.1624276].
  10. T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki and T. Shimizu, Annual.

Cited by

  1. Preparation and Characterization of Organic-inorganic Hybrid Composite Film with Plate-shaped Alumina by Electrophoretic Deposition as a Function of Aging Time of Sol-Gel Binder vol.52, pp.5, 2015, https://doi.org/10.4191/kcers.2015.52.5.366
  2. The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation vol.24, pp.5, 2015, https://doi.org/10.1088/0964-1726/24/5/055009
  3. Preparation of Alumina-Silica Composite Coatings by Electrophoretic Deposition and their Electric Insulation Properties vol.51, pp.3, 2014, https://doi.org/10.4191/kcers.2014.51.3.177
  4. Fabrication of insulated metal substrates with organic ceramic composite films for high thermal conductivity vol.43, pp.11, 2017, https://doi.org/10.1016/j.ceramint.2017.03.163