DOI QR코드

DOI QR Code

A Study on the Structural Optimum Design Method of Composite Rotor Blade Cross-Section using Genetic Algorithm

유전자 알고리즘을 이용한 복합재 로터 블레이드 단면 구조 최적설계방법에 관한 연구

  • Won, You-Jin (Korea Aerospace Research Institute, Naro-System Integration Team/Graduate School of Korea Aerospace University) ;
  • Lee, Soo-Yong (Korea Aerospace University, School of Aerospace & Mechanical Engineering)
  • Received : 2013.01.02
  • Accepted : 2013.03.18
  • Published : 2013.04.01

Abstract

In this paper, the structural optimum design method of composite rotor blade cross-section was investigated with the genetic algorithm. An auto-mesh generation program was developed for iterative calculations of optimum design, and stresses in the blade cross-section were analyzed by VABS (variational asymptotic beam sectional analysis) program. Minimum mass of rotor blade was defined as an object function, and stress failure index, center mass and blade minimum mass per unit length were chosen as constraints. Finally, design parameters such as the thickness and layup angles of a skin, and the thickness, position and width of a torsion box were determined through the structural optimum design method of composite rotor blade cross-section presented in this paper.

본 논문에서는 유전자 알고리즘을 이용한 복합재 로터 블레이드 단면 구조 최적설계방법에 대한 연구를 수행하였다. 반복적인 최적설계 계산을 위해 자동격자생성 프로그램을 개발하였으며, VABS를 이용해 로터 블레이드 단면에 대한 응력해석을 수행하였다. 로터 블레이드 최소질량을 목적함수로 정의하였으며, 응력 파손지수와 단면 질량중심 그리고 단위 길이 당 블레이드 최소질량을 구속조건으로 설정하였다. 최종적으로 본 논문의 복합재 로터 블레이드 단면 구조 최적설계방법을 통해서 스킨 적층각 및 스킨 두께 그리고 토션박스 두께, 토션박스 위치, 토션박스 폭과 같은 블레이드 단면 설계변수들이 결정되었다.

Keywords

References

  1. S. Y. Lee, J. S. Bae, S. J. Lee, B. I. Jeon, "Optimum Design of Composite Rotor Blade Corss-Section", Proceeding of the 2008 KSAS Spring Conference, pp. 698-701
  2. J. Y. Park, G. B. choi, C. J. Nam, C. S. Kim, "Preliminary Design of Helicopter Composite Rotor Blade", Proceeding of the 1998 KSAS Spring Conference, pp. 318-322
  3. H. K. Lee, H. C. Park, "A Study on the Structural Analysis of Helicopter Rotors Mode of CFRP", Journal of KSAS, Vol.14, No.2, Aug. 1986, pp. 67-77
  4. J. Y. Park, N. S. Jung, S. J. Kim, "Aeroelastic Optimum Design of Helicopter Rotor Blade made of Composites", Journal of KSAS, Vol.21, No.3, June. 1993, pp. 44-54
  5. M. W. Lee, J. S. Bae, S. Y. Lee, S. J. Lee, B. I. Jeon, "One-Dimensional Beam Modeling of a Composite Rotor Blade", Journal of SASE, Vol.2, No.1, Mar. 2008, pp. 7-12
  6. N. K. Yoon, S. J. Shin, "Static Aeroelastic Analysis upon a Composite Main Wing", Proceeding of the 2011 KSAS Fall Conference, pp. 1183-1187
  7. Y. H. Kim, H. D. Kim, J. S. Park, "Optimization Design of a Composite Structure by using VABS ", Proceeding of the 2012 KSAS Spring Conference,, pp. 312-317
  8. Webbin Yu, "VABS Manual for Users", March 12, 2011.
  9. D. H. Hodges, "Nonlinear Composite Beam Theory", Vol.213 Progress in Aeronautics and Astronautics, AIAA, Inc. Mar. 20, 2006.
  10. Cesnik, C. E. S. and Hodges, D. H., "VABS : A New Concept for Composite Rotor Blade Cross-Sectional Modeling", Journal of the American Helicopter Society, Vol.42, No.1, Jan. 1997, pp. 27-38 https://doi.org/10.4050/JAHS.42.27
  11. Wenbin. Yu, V. V. Volovoi, D. H. Hodges, and X. Hong, "Validation of the variational asymptotic beam sectional analysis", AIAA Journal, 40(10): 2105-2113, Oct. 2002. https://doi.org/10.2514/2.1545
  12. W. Yu and D. H. Hodges, "Generalized Timoshenko theory of the variational asymptotic beam sectional analysis", Journal of the American Helicopter Society, 50(1): 46-55, 2005. https://doi.org/10.4050/1.3092842
  13. W. Yu, D. H. Hodges, V. V. Volovoi, and C. E. S. Cesnik, "On Timoshenko-like modeling of initially curved and twisted composite beams", International Journal of Solids and Structures, 39(19): 5101-5121, 2002. https://doi.org/10.1016/S0020-7683(02)00399-2
  14. Y. H. Kim, "Optimization of a Mindlin Plate Considering Elasto-Plastic Region by Genetic Algorithms", Paper of a Master's degree, Korea Aerospace University, 1999
  15. J. H. Holland, "Adaptation in Natural and Artificial System", University of Michigan Press, 1975.
  16. K. Krishnakuma, Micro-Genetic Algorithms for Non-Stationary Function Optimization, SPIE; Intelligent Control and Adaptive Systems, Vol. 1190, Philadelphia, PA, 1989.

Cited by

  1. AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS vol.19, pp.3, 2014, https://doi.org/10.6112/kscfe.2014.19.3.029
  2. Discrete Optimal Design of Composite Rotor Blade Cross-Section vol.21, pp.2, 2013, https://doi.org/10.12985/ksaa.2013.21.2.007