DOI QR코드

DOI QR Code

An Efficient Method for Zircon Separation Using the Gold Pan

선광팬을 이용한 효과적인 저어콘 분리법

  • Cheong, Wonseok (School of Earth and Environmental Sciences, Seoul National University) ;
  • Cho, Moonsup (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Yoonsup (Department of Earth and Environmental Science, Chungbuk National University)
  • 정원석 (서울대학교 자연과학대학 지구환경과학부) ;
  • 조문섭 (서울대학교 자연과학대학 지구환경과학부) ;
  • 김윤섭 (충북대학교 자연과학대학 지구환경과학과)
  • Received : 2012.12.15
  • Accepted : 2013.01.23
  • Published : 2013.03.31

Abstract

We report an easy and efficient method for separating zircon grains using a gold pan and disposable sieve together with the tap water. Samples powdered to less than $230{\mu}m$ in grain size are placed on the water-filled pan tilted at about $10^{\circ}$. The outflowing water flooded with low-density particles is screened by a ${\sim}70{\mu}m$ sieve. The most efficient rate of water outflow is estimated to be 0.1 L/sec, when the distance between the tap and the surface of water-filled pan is kept at 20-25 cm. After 20-30 minutes of water outflow, heavy mineral fractions are ready for zircon collection using a hand magnet (and heavy liquid when necessary) or simply hand-picking. This procedure is most likely applicable for the separation of other heavy minerals including monazite.

우리는 선광팬, 일회용 체, 수돗물을 이용해 효과적이고 간편하게 저어콘을 분리하는 방법을 보고한다. 먼저 $230{\mu}m$ 이하로 분말화 한 시료를 약 $10^{\circ}$ 정도 기울인 선광팬에 넣고 물을 흘려보낸다. 밀도가 낮은 입자들과 더불어 선광팬으로부터 넘쳐흐른 물을 망간격이 ${\sim}70{\mu}m$인 체로 걸러낸다. 물의 공급량이 초당 0.1 리터이고 수도꼭지의 높이가 수면으로부터 20-25 cm일 때 가장 효율적으로 저어콘이 분리되었다. 수돗물을 공급한지 20-30분 정도 지나면 다음 작업인 자력 분리(필요시 중액 분리) 또는 저어콘 수선별을 진행할 수 있을 만큼 중광물들이 팬에 모인다. 이 방법은 중액을 사용하는 고전적 방법에 비해 안전하며, 저어콘 뿐만 아니라 모나자이트와 같은 다른 중광물의 분리에도 사용될 수 있다.

Keywords

References

  1. Callahan, J., 1987, A nontoxic heavy liquid and inexpensive filters for separation of mineral grains. Journal of Sedimentary Petrology, 57, 765-766. https://doi.org/10.1306/212F8C1A-2B24-11D7-8648000102C1865D
  2. Cawood, P.A., Hawkesworth, C.J. and Dhuime, B., 2012, Detrital zircon record and tectonic setting. Geology, doi:10.1130/G32945.1
  3. Cho, D.-L., 2004, Mineral separation and sample preparation methods efficient for subgrain zircon analyses. Journal of the Petrological Society of Korea, 13, 126-132 (In Korean with English abstract).
  4. Cho, M., Na, J. and Yi., K., 2010, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formaitnon, western Gyeonggi massif, Korea. Geosciences Journal, 14, 99-109. https://doi.org/10.1007/s12303-010-0011-7
  5. Cho, M., Cheong, W., Ernst, W.G., Yi, K. and Kim, J., 2013, SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the central Ogcheon fold-thrust belt, Korea: Evidence for tectonic assembly of Paleozoic sedimentary protoliths. Journal of Asian Earth Sciences, 63, 234-249. https://doi.org/10.1016/j.jseaes.2012.08.020
  6. Gehrels, G., 2012. Detrital zircon U-Pb geochronology: current methods and new opportunities. Chapter 2. In: Busby, C. and Azor, A. (Eds.), Tectonics of Sedimentary Basins: Recent Advances. Willy-Blackwell, pp. 47-62.
  7. Hauff, P.L. and Airey, J., 1980, The handling, hazards, and maintenance of heavy liquids in the geologic laboratory. Geological Survey Circular 827, USGS, pp. 24.
  8. Ijlst, L., 1973, A laboratory overflow-centrifuge for heavy liquid mineral separation. American Mineralogist, 58, 1088-1093.
  9. Kim, J., Yi, K., Cheong, Y. and Cheong, C.S., 2011, Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean Peninsula. Gondwana Research, 20, 608-620. https://doi.org/10.1016/j.gr.2010.12.005
  10. Krukowski, S.T., 1988, Sodium metatungstate: a new heavymineral separation medium for the extraction of condonts from insoluble residues. Journal of Paleontology, 62, 314-316. https://doi.org/10.1017/S0022336000030018
  11. Lim, S.-B., Chun, .Y., Kim, Y.B., Lee, S.R., and Kee, W.-S., 2007, Geological ages and stratigraphy of the metasedimentary strata in Hoenam-Miwon area, NW Okcheon belt. Journal of the Geological Society of Korea, 125-150 (In Korean with English abstract).
  12. Oberteuffer, J., 1974, Magnetic separation: a review of principles, devices, and applications. Magnetics, IEEE Transactions, 10, 223-238. https://doi.org/10.1109/TMAG.1974.1058315
  13. Park, K.-H., Lee, T.-H., and Yi, K., 2011, SHRIMP U-Pb ages of detrital zircons in the Daehyangsan Quartzite of the Okcheon Metamorphic Belt, Korea. Journal of the Geological Society of Korea, 47, 423-431 (In Korean with English abstract).
  14. Soderlund, U. and Johansson, L., 2002, A simple way to extract baddeleyite ($ZrO_2$). Geochemistry, Geophysics, Geosystems, 3, 1014. doi:10.1029.2001GC00212.
  15. Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J., and Cho, M., 2012, Late Paleozoic to Early Mesozoic arcrelated magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141. https://doi.org/10.1016/j.lithos.2012.02.007

Cited by

  1. Jurassic (~170Ma) Zircon U-Pb Age of a "Granite Boulder" in the Geumgang Limestone, Ogcheon Metamorphic Belt, Korea: Reinterpretation of its Origin vol.25, pp.1, 2016, https://doi.org/10.7854/JPSK.2016.25.1.29
  2. Late Cretaceous volcanic arc system in southwest Korea: Distribution, lithology, age, and tectonic implications vol.75, 2017, https://doi.org/10.1016/j.cretres.2017.03.010
  3. SHRIMP U-Pb Ages of the Yongyudo biotite Granites vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.393
  4. SHRIMP U-Pb Zircon Ages of the Metapsammite in the Yeongam-Gangjin Area vol.48, pp.4, 2015, https://doi.org/10.9719/EEG.2015.48.4.287
  5. An occurrence of the post-orogenic Triassic strata on Deokjeok Island, western Gyeonggi massif, Korea vol.18, pp.2, 2014, https://doi.org/10.1007/s12303-014-0027-5
  6. Detrital zircon U-Pb Ages of the Metapelite on the Southwestern Part of the Ogcheon Belt and Its Stratigraphical Implication vol.24, pp.1, 2015, https://doi.org/10.7854/JPSK.2015.24.1.55
  7. Neoproterozoic deposition and Triassic metamorphism of metasedimentary rocks in the Nam Co Complex, Song Ma Suture Zone, NW Vietnam vol.22, pp.4, 2018, https://doi.org/10.1007/s12303-018-0026-z
  8. Evolution of Alkalic Magma Systems: Insight from Coeval Evolution of Sodic and Potassic Fractionation Lineages at The Pleiades Volcanic Complex, Antarctica vol.60, pp.1, 2018, https://doi.org/10.1093/petrology/egy108