DOI QR코드

DOI QR Code

Antimicrobial Activity of the Synthetic Peptide Scolopendrasin II from the Centipede Scolopendra subspinipes mutilans

  • Kwon, Young-Nam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Lee, Joon Ha (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, In-Woo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Sang-Hee (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Nam, Sung-Hee (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Ahn, Mi-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Jeong, MiHye (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kang, Dong-Chul (Ilsong Institute of Life Science, Hallym University) ;
  • Lee, In Hee (Department of Biotechnology, Hoseo University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
  • Received : 2013.06.07
  • Accepted : 2013.06.26
  • Published : 2013.10.28

Abstract

The centipede Scolopendra subpinipes mutilans is a medicinally important arthropod species. However, its transcriptome is not currently available and transcriptome analysis would be useful in providing insight into a molecular level approach. Hence, we performed de novo RNA sequencing of S. subpinipes mutilans using next-generation sequencing. We generated a novel peptide (scolopendrasin II) based on a SVM algorithm, and biochemically evaluated the in vitro antimicrobial activity of scolopendrasin II against various microbes. Scolopendrasin II showed antibacterial activities against gram-positive and -negative bacterial strains, including the yeast Candida albicans and antibiotic-resistant gram-negative bacteria, as determined by a radial diffusion assay and colony count assay without hemolytic activity. In addition, we confirmed that scolopendrasin II bound to the surface of bacteria through a specific interaction with lipoteichoic acid and a lipopolysaccharide, which was one of the bacterial cell-wall components. In conclusion, our results suggest that scolopendrasin II may be useful for developing peptide antibiotics.

Keywords

References

  1. Adis J, Harvey MS. 2000. How many Arachnida and Myriapoda are there world-wide and in Amazonia? Stud. Neotrop. Fauna Environ. 35: 139-141.
  2. Baldridge GD, Kurtti TJ, Munderloh UG. 2005. Susceptibility of Rickettsia monacensis and Rickettsia peacockii to Cecropin A, Ceratotoxin A, and lysozyme. Curr. Microbiol. 51: 233-238. https://doi.org/10.1007/s00284-005-4532-7
  3. Brahmachary M, Krishnan SP, Koh JL, Khan AM, Seah SH, Tan TW, et al. 2004. ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res. 32: D586-D589. https://doi.org/10.1093/nar/gkh032
  4. Bulet P, Stocklin R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12: 3-11. https://doi.org/10.2174/0929866053406011
  5. Conlon JM. 2011. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res. 343: 201-212. https://doi.org/10.1007/s00441-010-1014-4
  6. Devine DA, Hancock RE. 2002. Cationic peptides: distribution and mechanisms of resistance. Curr. Pharm. Des. 8: 703-714. https://doi.org/10.2174/1381612023395501
  7. Garnier J, Gibrat JF, Robson B. 1996. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 266: 540-553. https://doi.org/10.1016/S0076-6879(96)66034-0
  8. Hancock RE, Chapple DS. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
  9. Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, et al. 2009. Isolation and characterization of a defensin-like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. doi: 10.1155/2009/136284.
  10. Hwang PM, Vogel HJ. 1998. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 76: 235-246. https://doi.org/10.1139/o98-026
  11. Jenssen H, Hamill P, Hancock RE. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19: 491-511. https://doi.org/10.1128/CMR.00056-05
  12. Mendes MA, de Souza BM, Palma MS. 2005. Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). Toxicon 45: 101-106. https://doi.org/10.1016/j.toxicon.2004.09.015
  13. Pasupuleti M, Schmidtchen A, Malmsten M. 2012. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol. 32: 143-171. https://doi.org/10.3109/07388551.2011.594423
  14. Pemberton RW. 1999. Insects and other arthropods used as drugs in Korean traditional medicine. J. Ethnopharmacol. 65: 207-216. https://doi.org/10.1016/S0378-8741(98)00209-8
  15. Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, et al. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon 55: 274-279. https://doi.org/10.1016/j.toxicon.2009.07.040
  16. Scott MG, Hancock RE. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407-431.
  17. Seshadri Sundararajan V, Gabere MN, Pretorius A, Adam S, Christoffels A, Lehvaslaiho M, et al. 2012. DAMPD: a manually curated antimicrobial peptide database. Nucleic Acids Res. 40: D1108-D1112. https://doi.org/10.1093/nar/gkr1063
  18. Smolowitz R. 2013. A review of current state of knowledge concerning Perkinsus marinus effects on Crassostrea virginica (Gmelin) (the eastern oyster). Vet. Pathol. 50: 404-411. https://doi.org/10.1177/0300985813480806
  19. Steinberg DA, Lehrer RI. 1997. Designer assays for antimicrobial peptides. Methods Mol. Biol. 78: 169-186.
  20. Wenhua R, Shuangquan Z, Daxiang S, Kaiya Z, Guang Y. 2006. Induction, purification and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes mutilans. Indian J. Biochem. Biophys. 43: 88-93.

Cited by

  1. Scolopendrasin I: a novel antimicrobial peptide isolated from the centipede Scolopendra subspinipes mutilans vol.31, pp.1, 2013, https://doi.org/10.7852/ijie.2015.31.1.14
  2. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications vol.7, pp.12, 2015, https://doi.org/10.3390/toxins7114832
  3. Involvement of mast cells and histamine in edema induced in mice by Scolopendra viridicornis centipede venom vol.121, pp.None, 2013, https://doi.org/10.1016/j.toxicon.2016.08.017
  4. Antimicrobial Activity of the Scolopendrasin V Peptide Identified from the Centipede Scolopendra subspinipes mutilans vol.27, pp.1, 2017, https://doi.org/10.4014/jmb.1609.09057
  5. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review vol.130, pp.None, 2013, https://doi.org/10.1016/j.toxicon.2017.02.020
  6. BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과 vol.30, pp.11, 2013, https://doi.org/10.5352/jls.2020.30.11.999