DOI QR코드

DOI QR Code

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset

휴대단말기 무선전력 전송모듈용 전자기파 차폐소재

  • Bae, Seok (Applied Materials Lab., LG Innotek Components & Material R&D Center) ;
  • Choi, Don-Chul (Applied Materials Lab., LG Innotek Components & Material R&D Center) ;
  • Hyun, Soon-Young (Applied Materials Lab., LG Innotek Components & Material R&D Center) ;
  • Lee, Sang Won (Applied Materials Lab., LG Innotek Components & Material R&D Center)
  • 배석 (LG이노텍 부품소재연구소 응용소재랩 기능소재팀) ;
  • 최돈철 (LG이노텍 부품소재연구소 응용소재랩 기능소재팀) ;
  • 현순영 (LG이노텍 부품소재연구소 응용소재랩 기능소재팀) ;
  • 이상원 (LG이노텍 부품소재연구소 응용소재랩 기능소재팀)
  • Received : 2013.03.19
  • Accepted : 2013.04.09
  • Published : 2013.04.30

Abstract

Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

자기유도형 기반의 무선전력 전송 기술을 이용한 무선충전 기능이 최근 스마트폰 등에 채용되어 주요한 소비자 편의기능으로 자리잡고 있다. 무선전력전송 모듈은 무선전력 전송효율을 개선하고 휴대폰 주요 회로부에 대한 전자기장 간섭을 억제하기 위하여 전자기장 차폐 소재의 사용이 필수적이다. 본 논문에서는 무선전력 전송모듈용 전자기장 차폐 소재의 역할과 기술에 대해 소개하였다. 이와 함께 향후 확산될 중급 전력(mid-power)과 대전력(high-power)영역의 무선전력 전송 응용분야에서 대응 가능한 차폐 소재의 개발 방향을 정리하였다.

Keywords

References

  1. N. Tesla, US Patent 1119732 (1914).
  2. http://olev.kaist.ac.kr/.
  3. H. Su, H. Zhang, X. Tang, and Y. Jing, J. Appl. Phys. 103, 093903 (2008). https://doi.org/10.1063/1.2908202
  4. M. Amano and Y. Kotsuka, IEEE Trans. Microw. Theory Tech. 51, 238 (2003). https://doi.org/10.1109/TMTT.2002.806912
  5. R. M. Bozorth, Ferromagnetism, IEEE Press, New York (1993) pp. 74-95.
  6. K. Saito, H. S. Park, D. Shindo, and Y. Yoshizawa, J. Magn. Magn. Mater. 305, 304 (2006). https://doi.org/10.1016/j.jmmm.2006.01.015
  7. Y. Yoshizawa, S. Oguma, and K. Yamaguchi, J. Appl. Phys. 64, 6044 (1988). https://doi.org/10.1063/1.342149
  8. H. Shokrollahi and K. Janghorban, J. Mater. Process. Tech. 189, 1 (2007). https://doi.org/10.1016/j.jmatprotec.2007.02.034
  9. A. Makino, T. Hatani, Y. Naitoh, T. Bitoh, A. Inoue, and T. Masumoto, IEEE Trans. Magn. 33, 3793 (1997). https://doi.org/10.1109/20.619574
  10. M. E. McHenry and D. E. Laughlin, Acta Mater. 48, 223 (2000). https://doi.org/10.1016/S1359-6454(99)00296-7
  11. http://www.jfe-steel.co.jp/en/products/electrical/supercore/index.html.
  12. http://www.metglas.com/products/magnetic_materials/2605SA1.asp.
  13. http://www.metglas.com/products/magnetic_materials/2714A.asp.
  14. http://www.hitachi-metals.co.jp/e/prod/prod01/p01_61.html.
  15. http://www.wirelesspowerconsortium.com/developers/specification.html.
  16. M. Drofenik, A. Znidarsic, and I Zajc, J. Appl. Phys. 82, 333 (1997). https://doi.org/10.1063/1.365817
  17. T. Nakamura, J. Appl. Phys. 88, 348 (2000). https://doi.org/10.1063/1.373666
  18. Victor E. Legg, Bell System Technical Journal 15, 39 (1936). https://doi.org/10.1002/j.1538-7305.1936.tb00718.x
  19. J. Hasch, U. Wostradowski, R. Hellinger, and D. Mittelstrass, Proceedings of the 8th European Radar Conference, Manchester, UK, October 12-14, 101 (2011).
  20. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, Science 317, 83 (2007). https://doi.org/10.1126/science.1143254
  21. A. Auddy and S. Sahu, Proceedings of the 10th International Conference on Electromagnetic Interference & Compatibility, Bangalore, India, November 26-27, 603 (2008).
  22. D. Nitsch, M. Camp, F. Sabath, J.-L. ter Haseborg, and H. Garbe, IEEE Trans. Electromagnetic Compatibility 46, 1 (2004). https://doi.org/10.1109/TEMC.2004.840371

Cited by

  1. Analysis of -Parameters in Magnetic Resonance WPT Using Superconducting Coils vol.26, pp.3, 2016, https://doi.org/10.1109/TASC.2016.2544139
  2. High-Frequency Properties of Fe-4.5 Wt% Si Powders With an Insulating Layer Synthesized by a Modified Dew-Point Treatment vol.53, pp.11, 2017, https://doi.org/10.1109/TMAG.2017.2700486