DOI QR코드

DOI QR Code

Mineralogy and Chemical Compositions of Dangdu Pb-Zn Deposit

당두 연-아연 광상의 산출광물과 화학조성

  • Lim, Onnuri (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Koh, Sang Mo (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Heo, Chul Ho (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 임온누리 (충남대학교 지질환경과학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 고상모 (한국지질자원연구원 광물자원연구본부) ;
  • 허철호 (한국지질자원연구원 광물자원연구본부)
  • Received : 2013.03.26
  • Accepted : 2013.04.09
  • Published : 2013.04.28

Abstract

The Dangdu Pb-Zn deposit is located at approximately 10 km south of Jecheon, Korea. Geology of Dangdu deposit area consists of Pre-cambrian metamorphic rocks, Ordovician sedimentary rocks, Jurassic and Cretaceous igneous rocks. The ore deposit is developed along the fracture trending $N20{\sim}40^{\circ}W$ in Ordovician limestone and is considered to be a skarn type ore deposit. The shape of ore bodies developed in the Dangdu ore deposit can be divided into lens-form(two ore bodies of -30 m level adit and one ore body of -63 m level adit) and pocket-form developed in -30 m level adit. Ore minerals observed in the ore deposits are magnetite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, cosalite, marcasite, hessite, native Bi and bismuthinite. Chemical composition of sphalerite ranges FeS 14.14~18.08 mole%, CdS 0.44~0.70 mole%, MnS 0.52~1.13, 1.53~2.09 mole%. Galena contains a small amount of silver with an average of 0.54 wt.%. An average composition of cosalite is Ag 2.43 wt.%, Bi 44.36 wt.%, Pb 35.05 wt.% which results the chemical formula of cosalite as $Pb_{1.7}Bi_{2.1}Ag_{0.2}S_5$. Skarn minerals consist of epidote, garnet, pyroxene, tremolite, quartz and calcite. The zoning pattern of the ore deposit can be subdivided into epidote-clinopyroxene zone, epidote-clinopyroxene-chlorite zone and epidote-garnet-clinopyroxene zone from the central part of the ore body towards the wall rocks. The chemical composition of garnet shows an increasing trend of grossular from epidote-clinopyroxene zone to epidote-garnet-clinopyroxene zone. Clinopyroxene occurs as a solid solution of diopside and hedenbergite, and the ratio of johannsenite increases from epidote-clinopyroxene zone to epidote-clinopyroxene-chlorite and epidote-garnet-clinopyroxene zones. The mineralization of the ore deposit is considered to be one stage event which can be separated into early skarn mineralization stage, middle ore mineralization stage and late low temperature mineralization stage. The temperature estimation from the low temperature mineralization range from $125{\sim}300^{\circ}C$ which is considered to be representing the temperature of late mineralization.

당두 연-아연 광상 주변의 지질은 선캠브리아 기반암류인 변성암류와 그 상부를 피복하는 오르도비스기의 돌로마이트, 석회암, 석회규산염암, 혼펠스, 그리고 이를 관입한 중생대와 백악기의 화강암류 및 암맥들로 구성되어있다. 광상은 오르도비스기의 석회암층 내 열극을 따라 $N20{\sim}40^{\circ}W$방향으로 교대한 연-아연 스카른광상이다. 당두광상에서 주로 개발된 광체는 -30 m level의 연장 10 m, 폭 3 m규모의 $N20^{\circ}E$, $50^{\circ}NW$방향으로 발달한 광체와 연장 15 m, 폭 3 m 규모의 $N30^{\circ}E$, $50^{\circ}NW$방향으로 발달한 광체, 포켓상 광체가 있으며, -63 m level의 폭 2 m, 연장 20 m규모의 $N20^{\circ}E$, $45^{\circ}NW$방향으로 발달한 광체가 있다. 주요 광석광물로는 섬아연석, 황동석, 자류철석, 방연석, 자철석, 황철석이 있으며, 자연창연, 휘창연석, 헤사이트, 코살라이트, 백철석이 소량 수반된다. 섬아연석의 정량분석 결과 평균 FeS 14.14~18.08 mole%, CdS 0.44~0.70 mole%, MnS 0.52~1.13, 1.53~2.09 mole%의 범위를 갖는다. 방연석은 평균 0.54 wt.%의 소량의 은을 함유하며, 일부 시료에서는 1.47 wt.%에 이르는 은을 함유하기도 한다. 코살라이트는 평균 Ag 2.43 wt.%, Bi 44.36 wt.%, Pb 35.05 wt.%의 조성을 보이며, 평균 화학식 $Pb_{1.7}Bi_{2.1}Ag_{0.2}S_5$ 로 Bi가 소량 부화되었으며, Ag를 소량 포함하는 것이 특징이다. 스카른광물로는 녹렴석, 녹니석, 석류석, 단사휘석, 투각섬석, 석영, 방해석이 있다. 광체는 중심부로부터 외곽부로 대칭적인 분포를 보이며, 중심부로부터 녹렴석-단사휘석대, 녹렴석-단사휘석-녹니석대, 녹렴석-석류석-단사휘석대 순으로 분포한다. 석류석의 화학조성은 광체 중심부에 해당하는 녹렴석-단사휘석대에서 외곽부인 녹렴석-단사휘석-녹니석대 및 녹렴석-석류석-단사휘석대로 감에 따라 그로술라의 비율이 높아지는 경향을 보인다. 단사휘석은 투휘석-헤덴버자이트 고용체로 산출되며, 녹렴석-단사휘석대에서 녹렴석-단사휘석-녹니석대, 녹렴석-석류석-단사휘석대로 감에 따라 요한세나이트의 비율이 높아지는 경향을 보인다. 광화작용은 단일광화작용에 의해 이루어졌으며, 조기는 스카른광물 정출기, 중기는 광석광물 정출기, 말기는 저온성 광석광물의 정출기이다. 주요 광석광물은 중기~말기에 걸쳐 형성되었다. 자류철석의 변질산물인 백철석-황철석의 공존 온도와 코살라이트의 형성온도로 미루어보아 저온성 광물 정출기의 온도는 $125{\sim}300^{\circ}C$로 생각된다. 광화작용에 따른 광석광물의 형성 온도에 의하면 조기에서 말기로 감에 따라 $600^{\circ}C$에서 $300^{\circ}C$ 이하의 환경까지 온도가 낮아졌을 것으로 추정된다.

Keywords

References

  1. Arnold, R.G. (1966) Mixtures of hexagonal and monoclinic pyrrhotite and the measurement of the metal content of pyrrhotite by X-ray diffraction. The American mineralogist, v.51, p.1221-1227.
  2. Choi, S.G. (1993) Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Journal of the Korean Institute of Mining Geology, v.26, p.135-144.
  3. Chon, H.T. and Shimazaki, H. (1986) Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Journal of the Korean Institute of Mining Geology, v.19, p.139-149.
  4. Craig, J.R. (1967) Phase relations and mineral assemblages in the Ag-Bi-Pb-S system, Mineralium deposita, v.1, p.278-306.
  5. Einaudi, M.T. (1971) The intermediate product of pyrrhotite alteration. American mineralogist, v.56, p.1297- 1302.
  6. Kihm, Y.H., Kim, J.H. and Lee, J.U. (1999) Geological structures of the Choseon and Ogcheon supergroups in the Deogsan-Cheongpung area, Jecheon-gun Chungcheongbuk- do, Korea. Journal of the Geological Society of Korea, v.35, p.233-252.
  7. Kihm, Y.H., Kim, J.H. and Cheong, S.W. (2000) Geological structures of the Southern Jecheon, Korea: Uplift process of Dangdusan metamorphic complex and its implication. Jour. Korean Earth Sciences Society, v.21, p.302-314.
  8. Kim, C.J. and Park, H.I. (1984) Mineral paragenesis and fluid inclusions of Geoje copper ore deposits. Journal of the Korean Institute of Mining Geology, v.17, p.245-258.
  9. Kim, K.W., Park, B.S. and Lee, H.K. (1967) Geological map of Jecheon sheet, Sheet 6825-III, 1:50,000, Geological survey of Korea, 46p.
  10. Kim, O.J., Min, K.D. and Kim, K.H. (1986) Geology and mineral resources of the Okchon Zone-The boundary between the Okchon and Choson systems in the South of Jechon, and the geology in its vicinity-. Journal of the Korean Institute of Mining Geology, v.19, p.225-230.
  11. KORES (1973) Geophysical prospecting, v.1, p.305-306.
  12. KORES (1977) Report of drilling survey on ore deposit, v.3, p.523-524.
  13. KORES (1979) Report of drilling survey on ore deposit, v.4, p.442-443.
  14. KORES (1980) Geophysical prospecting, v.2, p.416-418.
  15. KORES (1982) Report of drilling survey on ore deposit, v.5, p.314-315.
  16. KORES (2012) Report of drilling survey on the Dangdu(Au-Ag) deposit.
  17. Lusk, J. and Ford, C.E. (1978) Experimental extension of the sphalerite geobarometer to 10kbar. American mineralogist, v.63, p.516-519.
  18. Park, H.I. and Lee, C.H. (1992) Mode of occurrences and depositional conditions of Sb, Bi sulfosalt minerals from South ore deposits, Dunjeon gold mine. Journal of the Korean Institute of Mining Geology, v.25, p.17-25.
  19. Qian, G., Xia, F., Brugger, J., Skinner, W.M. and Bei, J. (2011) Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 200: An experimental study of reaction textures and mechanisms. American mineralogist, v.96, p.1878-1893. https://doi.org/10.2138/am.2011.3691
  20. Shibata, K., Park, N.Y., Uchiumi, S. and Ishihara, S. (1983), K-Ar Ages of the Jecheon Granitic Complex and related molybdenite deposits in South Korea. Mining Geology, v.33, p.193-197.
  21. Shin, D.B. (2006) Occurrence and mineral chemistry of Pb-Ag-Bi-S system minerals in the Nakdong As-Bi deposits, South Korea. Economic and Environmental Geology, v.39, p.643-651.
  22. Yun, S.K., Kim, K.H. and Woo, J.S. (1986) Studies on geology and mineral resources of the Okcheon belts- Mineralization in the vicinity of the Muamsa granite stock-. Journal of the Korean Institute of Mining Geology, v.19, p.3-17.

Cited by

  1. Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea vol.48, pp.1, 2015, https://doi.org/10.9719/EEG.2015.48.1.1
  2. Hydrochemical assessment of environmental status of surface and ground water in mine areas in South Korea: Emphasis on geochemical behaviors of metals and sulfate in ground water vol.183, 2017, https://doi.org/10.1016/j.gexplo.2017.09.014
  3. Occurrence and Geochemical Characteristics of the Haenam Pb-Zn Skarn Deposit vol.47, pp.4, 2014, https://doi.org/10.9719/EEG.2014.47.4.363