DOI QR코드

DOI QR Code

Spatial and Temporal Variability of Residual Current and Salinity according to Freshwater Discharge in Yeoungsan River Estuary

방류 유무에 따른 영산강 하구역의 시공간적 잔차류 및 염분 변화

  • Kim, Jong-Wook (Department of Oceanography, College of Natural Science, Inha University) ;
  • Yoon, Byung Il (Department of Oceanography, College of Natural Science, Inha University) ;
  • Song, Jin Il (Department of Oceanography, College of Natural Science, Inha University) ;
  • Lim, Chae Wook (Department of Oceanography, College of Natural Science, Inha University) ;
  • Woo, Seung-Buhm (Department of Oceanography, College of Natural Science, Inha University)
  • Received : 2012.10.22
  • Accepted : 2013.04.23
  • Published : 2013.04.30

Abstract

In this study, field measurements were conducted in the section about 7 km from sea dike to westward. The observations of along channel current were carried out, and water temperature and salinity were measured simultaneously at 10 stations during one tidal cycle, and sampling interval is 1 hour. The maximum ebb current is about 1.5 m/s at the surface layer but flood current is 0.4 m/s at the bottom layer during discharge period. Residual current during river discharge shows two layer structures which is typical characteristic of the estuary system. On the other hand, residual current during a period with no discharge has shown multi-layer structure different from general estuarine systems. The distribution of high salinity can be seen at the bottom layer as the effect of discharge does not reach down to the bottom layer during discharge. As a result, freshwater is not effected at the bottom layer during observation, and mixing of surface layer to bottom layer is reduced by stratification.

방류 유무에 따른 유속, 잔차류 그리고 염분의 시공간적인 분포를 파악하기 위해서 영산강 하구둑에서 서쪽방향으로 7.5 km의 구간까지 방류 시와 미방류 시에 종단면의 유속, 수온 그리고 염분을 한 조석 주기 동안 1시간 간격으로 동시에 관측하였다. 미방류 시에 연구지역의 유속 형태는 창조지속 시간이 길고 낙조류가 강한 낙조우세 특성을 보인다. 방류 시에 표층 최대 유속은 최대 1.5 m/s의 제트류 형태로 방류되지만, 저층 유속은 미방류 시와 비교해보면 0.4 m/s로 크게 변하지 않는다. 방류 시의 수직 잔차류 분포는 담수의 영향으로 일반적인 하구에서 보이는 2층 흐름 구조를 가지는 반면에, 미방류 시에는 다층 흐름 구조가 나타난다. 일반적으로 방류로 인하여 하구둑 외측에서 강한 연직 혼합이 일어나는 것으로 알려져 있으나, 본 연구조사에서는 방류에 의해서 염분 성층이 발달하고, 표층과 저층간의 연직 혼합에 크게 기여하지 않는 것으로 나타났다. 이는 방류가 강하게 일어남에도 불구하고 하구둑 전면의 지형적 효과와 밀도 차에 의한 해수 흐름 특성에 의한 것으로 판단되며, 이를 통해 하구둑 방향의 물질수송은 수직 방향보다는 수평 방향으로 나타남을 알 수 있다.

Keywords

References

  1. 강주환, 송재준, 오남선 (1998). 낙조우세와 관련된 목포해역의 조류특성 분석. 대한토목학회논문집, 18, 185-193.
  2. 강주환 (1996). 하구둑 및 방조제 건설에 따른 목포해역의 환경변화. 대한토목학회논문집, 16, 611-619.
  3. 박래환, 조양기, 조 철, 선연종, 박경양 (2001). 2000년 여름 영산강 하구의 해수 특성과 순환, 한국해양학회지, 6(4), 218-224.
  4. 이석우 (1994). 영산강 하구둑 건설에 따른 목포항의 조위의 변화. 한국항만협회지, 18, 27-37
  5. 이동환, 윤병일, 김종욱, 구본호, 우승범 (2012). 단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사. 한국해안해양공학회 논문집, 24(1), 16-25. https://doi.org/10.9765/KSCOE.2012.24.1.016
  6. 최병호 (1984). 영산강하구의 방조제건설에 따른 조위변화, 대한토목공학논문집, 4, 113-124.
  7. 최낙용, 윤병일, 김종욱, 송진일, 임은표, 우승범 (2012). 대,소조기시 한강하구 석모수로에서 단면 잔차류와 성층간의 관계 연구. 한국해안해양공학회 논문집, 24(3), 149-158. https://doi.org/10.9765/KSCOE.2012.24.3.149
  8. Chant, R.J. (2002). Secondary flows in a region of flow curvature: relationship with tidal forcing and river discharge. J. Geophys. Res., doi:10.1023/2001JC001082
  9. Chant, R.J. and Wilson, R.E. (1997). Secondary circulation in a highly stratified channel. J. Geophys. Res. 102, 23,207-23,215.
  10. Cheng, P. and Valle-Levinson, A. (2010). Residual Currents Induced by Asymmetric Tidal Mixing in Weakly Stratified Narrow Estuaries. J. Phys. Oceangr., 40, 2135-2147 https://doi.org/10.1175/2010JPO4314.1
  11. Elias, E.P.L. and Stive, M.J.F. (2006). The effect of stratification on the residual flow in a mixed-energy tide-dominated inlet. In A Sanchez-Arcilla (Ed.), Coastal Dynamics 2005: proceedings of the 5th international conference, 1-13.
  12. Framinan, M.B., Valle-Levinson, A., Sepulveda, H.H. and Brown, O.B. (2008). Tidal variations of flow convergence, shear and stratification at the Rio de la Plata estuary turbidity front. Journal of Geophysical Research, 113, C8.
  13. Friedrichs, C.T. and Aubrey, D.G. (1988). Tidal Distortion in Shallow Well-Mixed Estuaries: A Synthesis. Estuarine, Coastal and Shelf Science, 27, 521-545. https://doi.org/10.1016/0272-7714(88)90082-0
  14. Garvine, R.W. (1974). Dynamics of small-scale oceanic fronts, J. Phys. Oceanogr., 4(4), 557-569. https://doi.org/10.1175/1520-0485(1974)004<0557:DOSSOF>2.0.CO;2
  15. Geyer, W.R., Trowbridge, J.H and Bowen, M.N. (2000). The dynamics of a partially mixed estuary. J. Phys. Oceanogr. 30, 2035-2048. https://doi.org/10.1175/1520-0485(2000)030<2035:TDOAPM>2.0.CO;2
  16. Geyer, W.R. (1993). Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary. Ann. Rev. Fluid Mech. 25, 291-323. https://doi.org/10.1146/annurev.fl.25.010193.001451
  17. Geyer, W.R., Chant R. and Houghton R. (2008b). Tidal and springneap variations in horizontal dispersion in a partiaaly mixed estuary, J. Geophys.Res,113,C07023, doi : 10.1029/2007JC004644.
  18. Guerrero, R., Acham, E., Framinan, M. and Lasta, C. (1997). Physical oceanography of the Rio de la Plata estuary, Argentina, Cont. Shelf Res., 17, 727-742. https://doi.org/10.1016/S0278-4343(96)00061-1
  19. Hansen, D.V. and Rattray, M. (1965). Gravitational circulation in straits and estuaries. J. Mar. Res., 23, 104-122.
  20. Hansen, D.V. and Rattray, M. (1966). New dimensions in estuary classification. Limnol. Oceanogr. 11, 319-326. https://doi.org/10.4319/lo.1966.11.3.0319
  21. Ianniello, J.P. (1977). Tidally induced residual currents in estuaries of constant breadth and depth. J. Mar. Res., 35, 755-786.
  22. Joyce, T.M. (1989). On In Situ "Calibration" of Shipboard ADCPs. J. Atmos. Oceanic Technol., 6, 169-172. https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2
  23. Kranenberg, C. (1986). A time scale for long-term salt intrusion in well-mixed estuaries. J. Phys. Oceanogr., 16, 1329-1331. https://doi.org/10.1175/1520-0485(1986)016<1329:ATSFLT>2.0.CO;2
  24. Lerczak, J. A. and Geyer, W. R. (2004). Modeling the lateral circulation in straight, stratified estuaries.. J. Phys. Oceanogr., 34, 1410-1428. https://doi.org/10.1175/1520-0485(2004)034<1410:MTLCIS>2.0.CO;2
  25. Lerczak, J. A., Geyer, W. R. and Chant, R. J. (2006). Mechanisms driving the time-dependent salt flux in a partially stratified estuary. J. Phys. Oceanogr., 36, 2283-2298. https://doi.org/10.1175/JPO2975.1
  26. Lwiza, K. M. M., Bowers, D. G. and Simpson, J. H (1991). Residual and tidal flow at a tidal mixing front in the North Sea, Continental Shelf Research., 11(11), 1379-1395. https://doi.org/10.1016/0278-4343(91)90041-4
  27. MacCready, P. (1999). Estuarine adjustment to changes in river flow and tidal mixing. J. Phys. Oceanogr., 29, 708-726. https://doi.org/10.1175/1520-0485(1999)029<0708:EATCIR>2.0.CO;2
  28. MacCready, P. and Rhines, P.B. (1991). Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J. Fluid. Mech. 223, 631-661. https://doi.org/10.1017/S0022112091001581
  29. MacCready, P. (2004). Toward a unified theory of tidally-averaged estuarine salinity structure. Estuaries 27(4), 561-570. https://doi.org/10.1007/BF02907644
  30. Monismith, S. G., Kimmerer, W., Burau, J. R., Stacey, M.T. (2002). Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay. J. Phys. Oceanogr., 32, 3003-3019. https://doi.org/10.1175/1520-0485(2002)032<3003:SAFIVO>2.0.CO;2
  31. Nepf, H. and Geyer, W.R. (1996). Intra-tidal variations in stratification and mixing in the Hudson Estuary. J. Geophys. Res., 101, 12079-12086. https://doi.org/10.1029/96JC00630
  32. Preisendorfer, R. and Mobley, C. (1988). Theory of fluorescent irradiance fields in natural waters. J. Geophys.Res,93(D9): doi: 10.1029/88JD00037. issn: 0148-0227.
  33. Pritchard, D.W. (1956). The dynamic structure of a coastal plain estuary. J. Mar. Res., 17, 412-423.
  34. Ralston, D.K. and Stacey, M.T. (2005). Stratification and turbulence in subtidal channels through intertidal mudflats. J. Geophys. Res.110, Article C08009, 2005.
  35. Seim, H.E. and Gregg, M.C. (1997). The importance of aspiration and channel curvature in producing strong vertical mixing over a sill. J. Geophys. Res., 102, 3451-3472. https://doi.org/10.1029/96JC03415
  36. Smith, R. (1977). Long term dispersion of contaminants in small estuaries. J. Fluid Mech. 82, 129-146. https://doi.org/10.1017/S0022112077000561
  37. Winant, C.D. and Guillermo, G.V. (2003). Tidal Dynamics and Residual Circulation in a Well-Mixed Inverse Estuary. J. Phys. Oceanogr., 33, 1365-1379. https://doi.org/10.1175/1520-0485(2003)033<1365:TDARCI>2.0.CO;2

Cited by

  1. Characteristic Distributions of Nutrients and Water Quality Parameters in the Vicinity of Mokpo Harbor after Freshwater Inputs vol.21, pp.6, 2015, https://doi.org/10.7837/kosomes.2015.21.6.617
  2. Seasonal variability of estuarine dynamics due to freshwater discharge and its influence on biological productivity in Yeongsan River Estuary, Korea vol.181, 2017, https://doi.org/10.1016/j.chemosphere.2017.04.085
  3. The Budget of Nutrients in the Estuaries Near Mokpo Harbor vol.22, pp.6, 2016, https://doi.org/10.7837/kosomes.2016.22.6.708
  4. Spatial and Temporal Variability of Residual Current and Salinity Distribution according to Freshwater Discharge during Monsoon in Nakdong River Estuary vol.26, pp.3, 2014, https://doi.org/10.9765/KSCOE.2014.26.3.184
  5. Study on Variability of Residual Current and Salinity Structure According to River Discharge at the Yeoungsan River Estuary, South Korea vol.116, 2015, https://doi.org/10.1016/j.proeng.2015.08.392
  6. Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary vol.19, pp.3, 2014, https://doi.org/10.7850/jkso.2014.19.3.180
  7. Consideration on Changes of Density Stratification in Saemangeum Reservoir vol.18, pp.2, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.2.81