DOI QR코드

DOI QR Code

A parametric study of optimum tall piers for railway bridge viaducts

  • Martinez-Martin, Francisco J. (Department of Geotechnical Engineering, Universitat Politecnica de Valencia) ;
  • Gonzalez-Vidosa, Fernando (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia) ;
  • Hospitaler, Antonio (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia) ;
  • Yepes, Victor (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia)
  • Received : 2011.12.07
  • Accepted : 2013.02.19
  • Published : 2013.03.25

Abstract

This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.

Keywords

References

  1. Adeli, H. and Sarma, K.C. (2006), Cost Optimization of Structures, John Wiley & Sons, Chichester, UK.
  2. Awad, Z.K. and Yusaf, T. (2012), "Fibre composite railway sleeper design by using FE approach and optimization techniques", Struct. Eng. Mech., 41(2), 231-242. https://doi.org/10.12989/sem.2012.41.2.231
  3. Balling, R.J. and Yao, X. (1997), "Optimization of reinforced concrete frames", J. Struct. Eng., ASCE, 123(2), 193-202. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(193)
  4. Bonet, J.L., Romero, M.L., Miguel, P.F. and Fernández, M.A. (2004), "A fast stress integration algorithm for reinforced concrete sections with axial loads and biaxial bending", Comput. Struct., 82(2-3), 213-225. https://doi.org/10.1016/j.compstruc.2003.10.009
  5. Carbonell, A., Gonzalez-Vidosa, F. and Yepes, V. (2011), "Design of reinforced concrete road vault underpasses by heuristic optimization", Adv. Eng. Softw., 42(4), 151-159. https://doi.org/10.1016/j.advengsoft.2011.01.002
  6. CEN (2003), EN 1991-2: Eurocode 1. Basis of Design and Actions on Structures. Part 2: Traffic Loads on Bridges, Comite Europeen de Normalisation, Brussels, Belgium.
  7. CEN (2004a), EN 1992-1-1: Eurocode 2. Design of Concrete Structures - Part 1-1: General Rules and Rules for Building, Comite Europeen de Normalisation, Brussels, Belgium.
  8. CEN (2004b), EN 1998-1: Eurocode 8. Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings. Comite Europeen de Normalisation, Brussels, Belgium.
  9. Coello, C.A., Christiansen, A.D. and Santos, F. (1997), "A simple genetic algorithm for the design of reinforced concrete beams", Eng. Comput., 13(4), 185-196. https://doi.org/10.1007/BF01200046
  10. Cohn, M.Z. and Dinovitzer, A.S. (1994), "Application of structural optimization", J. Struct. Eng., ASCE, 120(2), 617-649. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:2(617)
  11. Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Trans. Syst. Man Cybern. Part B, 26(1), 29-41. https://doi.org/10.1109/3477.484436
  12. Holland, J.H. (1975), Adaptation in Natural and Artificial systems, University of Michigan Press, Ann Arbor, USA.
  13. Kaveh, A. and Sabzi, O. (2011), "A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames", Int. J. Civ. Eng., 9(3), 193-206.
  14. Kennedy, J. and Eberhart, R. (1995), "Particle Swarm Optimization", IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, Perth, Australia, 1942-1948.
  15. Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2011), "Modified particle swarm optimization for optimum design of spread footing and retaining wall", J. Zhejiang Univ.-SCI A, 12(6), 415-427. https://doi.org/10.1631/jzus.A1000252
  16. Kicinger, R., Arciszewski, T. and De Jong, K. (2005), "Evolutionary computation and structural design: A survey of the state-of-the-art", Comput. Struct., 83(23-24), 1943-1978. https://doi.org/10.1016/j.compstruc.2005.03.002
  17. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671
  18. Lee, E.H. and Park, J. (2011), "Structural design using topology and shape optimization", Struct. Eng. Mech., 38(4), 517-527. https://doi.org/10.12989/sem.2011.38.4.517
  19. Lee, K.S. and Geem, Z. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
  20. Li, G., Lu, H. and Liu, X. (2010), "A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings", Struct. Eng. Mech., 35(1), 19-35. https://doi.org/10.12989/sem.2010.35.1.019
  21. Liao, T.W., Egbelu, P.J., Sarker, B.R. and Leu, S.S. (2011), "Metaheuristics for project and construction management - A state-of-the-art review", Autom. Constr., 20(5), 491-505. https://doi.org/10.1016/j.autcon.2010.12.006
  22. Lignola, G.P., Prota, A., Manfredi, G. and Cosenza, E. (2007), "Deformability of reinforced concrete hollow columns confined with CFRP", ACI Struct. J., 104(5), 629-637.
  23. Manterola, J. (2000), Bridges: volume IV. ETS Ingenieros Caminos, Madrid, Spain. (in Spanish)
  24. Marti, J.V., Gonzalez-Vidosa, F., Yepes, V. and Alcala, J. (2013), "Design of prestressed concrete precast road bridges with hybrid simulated annealing", Eng. Struct., 48, 342-352. https://doi.org/10.1016/j.engstruct.2012.09.014
  25. Martinez, F.J., Gonzalez-Vidosa, F., Hospitaler, A. and Alcalá, J. (2011), "Design of tall bridge piers by ant colony optimization", Eng. Struct., 33(8), 2320-2329. https://doi.org/10.1016/j.engstruct.2011.04.005
  26. Martinez, F.J., Gonzalez-Vidosa, F., Hospitaler, A. and Yepes, V. (2010), "Heuristic optimization of RC bridge piers with rectangular hollow sections", Comput. Struct., 88(5-6), 375-386. https://doi.org/10.1016/j.compstruc.2009.11.009
  27. Martínez, P., Martí, P. and Querin, O.M. (2007), "Growth method for size, topology, and geometry optimization of truss structures", Struct. Multidisc. Optim., 33(1), 13-26.
  28. Ministerio de Fomento (2007). IAPF: Code for Actions for the Design of Railway Bridges. Ministerio de Fomento, Madrid, Spain. (in Spanish)
  29. Ministerio de Fomento (2008), EHE: Code of Structural Concrete, Ministerio de Fomento, Madrid, Spain. (in Spanish)
  30. Paya, I., Yepes, V., Gonzalez-Vidosa, F. and Hospitaler, A. (2008), "Multiobjective optimization of concrete frames by simulated annealing", Comput.-Aided Civil Infrastruct. Eng., 23(8), 596-610. https://doi.org/10.1111/j.1467-8667.2008.00561.x
  31. Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa, F. (2009), "$CO_{2}$ efficient design of reinforced concrete building frames", Eng. Struct., 31(7), 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034
  32. Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa, F., (2010), "On the Weibull cost estimation of building frames designed by simulated annealing", Meccanica, 45(5), 693-704. https://doi.org/10.1007/s11012-010-9285-0
  33. Perea, C., Alcala, J., Yepes, V., González-Vidosa, F. and Hospitaler, A. (2008), "Design of reinforced concrete bridge frames by heuristic optimization", Adv. Eng. Softw., 39(8), 676-688. https://doi.org/10.1016/j.advengsoft.2007.07.007
  34. Perea, C., Yepes, V., Alcala, J., Hospitaler, A. and Gonzalez-Vidosa, F. (2010), "A parametric study of optimum road frame bridges by threshold acceptance", Indian J. Eng. Mater. S., 17(6), 427-437.
  35. Yepes, V., Alcala, J., Perea, C. and Gonzalez-Vidosa, F. (2008), "A parametric study of earth-retaining walls by simulated annealing", Eng. Struct., 30(3), 821-830. https://doi.org/10.1016/j.engstruct.2007.05.023
  36. Yepes, V., Gonzalez-Vidosa, F., Alcalá, J. and Villalba, P. (2012), "$CO_{2}$-Optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy", J. Comp. Civil Eng., ASCE, 26(3), 378-386. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000140

Cited by

  1. Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica vol.67, pp.540, 2015, https://doi.org/10.3989/ic.14.089
  2. Robust optimization of reinforced concrete folded plate and shell roof structure incorporating parameter uncertainty vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.707
  3. Heuristics in optimal detailed design of precast road bridges vol.17, pp.4, 2017, https://doi.org/10.1016/j.acme.2017.02.006
  4. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges vol.92, 2015, https://doi.org/10.1016/j.engstruct.2015.03.015
  5. Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm vol.11, pp.7, 2014, https://doi.org/10.1590/S1679-78252014000700007
  6. A novel harmony search based optimization of reinforced concrete biaxially loaded columns vol.54, pp.6, 2015, https://doi.org/10.12989/sem.2015.54.6.1097
  7. Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety vol.125, 2016, https://doi.org/10.1016/j.engstruct.2016.07.012
  8. Lifetime reliability-based optimization of post-tensioned box-girder bridges vol.145, 2017, https://doi.org/10.1016/j.engstruct.2017.05.013
  9. Optimum Criss Crossing Cables in Multi-span Cable-stayed Bridges using Genetic Algorithms pp.1976-3808, 2019, https://doi.org/10.1007/s12205-018-5736-2