DOI QR코드

DOI QR Code

Visibility Studies of Grating-based Neutron Phase Contrast and Dark-field Imaging by Using Partial Coherence Theory

  • Lee, Seung Wook (School of Mechanical Engineering, Pusan National University) ;
  • Zhou, Yu (LMAM, School of Mathematical Sciences, and Beijing International Center for Mathematical Research, Peking University) ;
  • Zhou, Tie (LMAM, School of Mathematical Sciences, and Beijing International Center for Mathematical Research, Peking University) ;
  • Jiang, Ming (LMAM, School of Mathematical Sciences, and Beijing International Center for Mathematical Research, Peking University) ;
  • Kim, Jongyul (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Ahn, Chi Won (Nano Fusion Technology Division, National Nanofab Center) ;
  • Louis, Alfred K. (Department of Mathematics, Saarland University)
  • 투고 : 2013.06.03
  • 심사 : 2013.08.07
  • 발행 : 2013.12.13

초록

Visibility is a crucial figure of merit for grating-based neutron phase contrast and dark-field imaging, and estimating it is important for imaging system design. In this paper, we study the visibility under polychromatic illumination by using partial coherence theory. Theoretically, we establish a model to predict the visibility for various cases. Experimental data are also measured by using polychromatic thermal neutron beam line to generate the visibility. Comparisons between the two show that our theoretical predictions and the experimental results agree with a probability higher than 70%.

키워드

참고문헌

  1. C. Grunzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kahne, R. Schufer, S. Pofahl, H. M. R. Rnnow and F. Pfeiffer, Appl. Phys. Let. 93, 112504 (2008). https://doi.org/10.1063/1.2975848
  2. C. Grunzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kahne, J. Kohlbrecher, R. Schufer, P. Lejcek and H. M. R. Rnnow, Phys. Rev. Let. 101, 25504 (2008). https://doi.org/10.1103/PhysRevLett.101.025504
  3. T. Weitkamp, C. David, C. Kottler, O. Bunk and F. Pfeiffer, Developments in X-Ray Tomography V, edited by U. Bonse (SPIE, San Diego, 2006), Vol. 6318, p. S3180.
  4. W. Yashiro, Y. Terui, K. Kawabata and A. Momose, Opt. Express 18, 16890 (2010). https://doi.org/10.1364/OE.18.016890
  5. Y. Zhou, A. K. Louis, T. Zhou and M. Jiang, Opt. Commun. 285, 4763 (2012). https://doi.org/10.1016/j.optcom.2012.07.046
  6. K. Patorski, Handbook of the moire fringe technique (Elsevier Science, Amsterdam, 1993)
  7. S. W. Lee, Y. K. Jun and O. Y. Kwon, J. Korean Phys. Soc. 58, 730 (2011). https://doi.org/10.3938/jkps.58.730
  8. J. Kim, K. H. Lee, C. H. Lim, T. Kim, C. W. Ahn, G. Cho and S. W. Lee, Rev. Sci. Instrum. 84, 063705 (2013) https://doi.org/10.1063/1.4810014
  9. C. Grunzweig, Diploma Thesis, Paul Scherrer Institut (2006).
  10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens and E. Ziegler, Opt. Express 13, 6296 (2005). https://doi.org/10.1364/OPEX.13.006296
  11. F. Pfeiffer, T. Weitkamp, O. Bunk and C. David, Nat. Phys. 2, 258 (2006). https://doi.org/10.1038/nphys265

피인용 문헌

  1. 격자간섭계를 위한 탈봇 패턴 연구 vol.38, pp.1, 2013, https://doi.org/10.17946/jrst.2015.38.1.06
  2. Effects of unresolvable edges in grating-based X-ray differential phase imaging. vol.23, pp.7, 2013, https://doi.org/10.1364/oe.23.009233
  3. Small Angle Scattering in Neutron Imaging-A Review vol.3, pp.4, 2013, https://doi.org/10.3390/jimaging3040064
  4. Effect of insufficient temporal coherence on visibility contrast in X-ray grating interferometry vol.26, pp.2, 2018, https://doi.org/10.1364/oe.26.001012
  5. Characterization of the phase sensitivity, visibility, and resolution in a symmetric neutron grating interferometer vol.90, pp.7, 2019, https://doi.org/10.1063/1.5089588