DOI QR코드

DOI QR Code

Development and Characterization of $Ln^{3+}$-doped $Gd_2GeO_5$ Phosphors

  • Oh, M.J. (Department of Physics, Kyungpook National University, Department of Radiology, Daegu Heath Colleage) ;
  • Kim, H.J. (Department of Physics, Kyungpook National University) ;
  • Park, H. (Department of Physics, Kyungpook National University) ;
  • Kim, S.H. (Department of Radiological Science, Cheongju University)
  • Received : 2012.12.26
  • Accepted : 2013.06.19
  • Published : 2013.10.15

Abstract

The $Ln^{3+}$ ($Ln^{3+}=Eu^{3+}$, $Dy^{3+}$, $Tb^{3+}$ or $Sm^{3+}$)-doped $Gd_2GeO_5$ phosphors are produced by using the solid-state reaction. The $Gd_2GeO_5$ has a high effective Z-number ($Z_{eff}=46$) and density ($7.12g/cm^3$) and is sensitive to X-rays. The emission wavelengths of $Ln^{3+}$-doped phosphors are expected adequate for the CCDs. We fabricated $Ln^{3+}$-doped $Gd_2GeO_5$ phosphors and studied their structural and luminescence properties. The $Ln^{3+}$-doped $Gd_2GeO_5$ phosphors were excited by ultraviolet (UV) light, X-rays, and protons. The emission wavelengths were measured to be from 450 nm to 750 nm. The 45-MeV proton beam at the MC-50 cyclotron in the Korea Institute of Radiological and Medical Sciences was used for this purpose. These emission wavelengths matched well with those for a typical CCD. Therefore, $Ln^{3+}$-doped $Gd_2GeO_5$ phosphors are good candidates for use of radiation-imaging phosphors.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-S. Chang and Y.-J. Lin, J. Alloy Compd. 439, 367 (2007). https://doi.org/10.1016/j.jallcom.2006.08.269
  2. P. Guo, F. Zhao, F. Liao, S. Tian and X. Jing, J. Lumin. 105, 61 (2003). https://doi.org/10.1016/S0022-2313(03)00098-X
  3. L. Brixner, J. Calabrese and H. Y. Chen, J. Less. Common. Metals 110, 397 (1985). https://doi.org/10.1016/0022-5088(85)90349-2
  4. M. J. J. Lammers, A. Saakes and G. Blasse, L. H. Brixner, J. Mat. Res. Bull. 21, 295 (1986). https://doi.org/10.1016/0025-5408(86)90185-6
  5. M. Oh, H. J. Kim, S. Kim and C. Cheon, J. Korean Phys. Soc. 61, 273 (2012). https://doi.org/10.3938/jkps.61.273
  6. L. H. Brixner, J. F. Ackerman and C. M. Foris, J. Lumin. 26, 1 (1981). https://doi.org/10.1016/0022-2313(81)90166-6
  7. X. Zhang, H. Lang and H. J. Seo, J. Fluoresc. 21, 1111 (2011). https://doi.org/10.1007/s10895-010-0786-y
  8. Z. Zhang, O. M. ten Kate, A. Delsing, E. van der Kolk, P. H. L. Notten, P. Dorenbos, J. Zhao and H. T. Hintzen, J. Mater. Chem. 22, 9813 (2012). https://doi.org/10.1039/c2jm30220a
  9. J. B. Gruber, B. Zandi, H. J. Lozykowski and W. M. Jadwisienczak, J. Appl. Phys. 92, 5127 (2002). https://doi.org/10.1063/1.1511294

Cited by

  1. Eu3+와 Tb3+ 활성제 이온이 SrSnO3 형광체의 특성에 미치는 영향 vol.24, pp.9, 2013, https://doi.org/10.3740/mrsk.2014.24.9.469
  2. 활성제 이온의 농도 변화에 따른 La2MoO6:RE3+ (RE = Eu, Sm) 형광체의 발광 특성 vol.50, pp.4, 2013, https://doi.org/10.5695/jkise.2017.50.4.282