DOI QR코드

DOI QR Code

High Energy-density $0.72Pb(Zr_{0.47}Ti_{0.53})O_3-0.28Pb[(Zn0_{0.45}Ni_{0.55})_{1/3}Nb_{2/3}]O_3$ Thick Films Fabricated by Tape Casting for Energy-harvesting-device Applications

  • Jeon, Chang Jun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology, Korea and Department of Materials Engineering, Kyonggi University) ;
  • Hwang, Ha Na (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young Hun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Nam, Joong Hee (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Jong Bong (MLCC R&D group, LCR Division, Samsung Electro-Mechanics Co., Ltd.) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Eung Soo (Department of Materials Engineering, Kyonggi University)
  • Received : 2013.05.07
  • Accepted : 2013.07.31
  • Published : 2013.11.15

Abstract

$0.72Pb(Zr_{0.47}Ti_{0.53})O_3-0.28Pb[(Zn0_{0.45}Ni_{0.55})_{1/3}Nb_{2/3}]O_3$ (0.72PZT-0.28PZNN) thick films were prepared by using a tape casting method to develop new materials with high energy-density applicable to energy-harvesting devices. The piezoelectric strain constant ($d_{33}$), dielectric constant (${\varepsilon}^T_{33}/{\varepsilon}_0$), piezoelectric voltage constant ($g_{33}$) and transduction coefficient ($d_{33}{\cdot}g_{33}$) of the films were affected by the sintering temperature. These results could be attributed to the crystal structure, microstructures and secondary phases. However, the dielectric loss ($tan{\delta}$) of the films was not changed remarkably with increasing sintering temperature. Typically, a $d_{33}$ of 452 pC/N, ${\varepsilon}^T_{33}/{\varepsilon}_0$ of 1444, $d_{33}{\cdot}g_{33}$ of $20,340{\times}10^{-15}m^2/N$ and $tan{\delta}$ of 0.15% were obtained for the films sintered at $1050^{\circ}C$ for 1 h. The power generation performance of the piezoelectric unimorph cantilever was assessed to demonstrate the feasibility of the 0.72PZT-0.28PZNN piezoelectric thick film. Also, theoretical models were employed to predict the resonance frequency of the unimorph cantilever generator, and the predicted values were compared with experimental data.

Keywords

References

  1. Y.-J. Cha, I.-T. Seo, I.-Y. Kang, S.-B. Shin, J.-H. Choi, S. Nahm, T.-H. Seung and J.-H. Paik, J. Appl. Phys. 110, 084111 (2011). https://doi.org/10.1063/1.3653274
  2. I.-T. Seo, Y.-J. Cha, I.-Y. Kang, J.-H. Choi, S. Nahm, T.-H. Seung and J.-H. Paik, J. Am. Ceram. Soc. 94, 3629 (2011). https://doi.org/10.1111/j.1551-2916.2011.04817.x
  3. R. A. Islam and S. Priya, J. Am. Ceram. Soc. 89, 3147 (2006). https://doi.org/10.1111/j.1551-2916.2006.01205.x
  4. S. Priya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610 (2010). https://doi.org/10.1109/TUFFC.2010.1734
  5. K. Carl and K. H. Hardtl, Phys. Stat. Sol. A 8, 87 (1971). https://doi.org/10.1002/pssa.2210080108
  6. S. Roundy, P. K. Wright and J. Rabaey, Computer Commun. 26, 1131 (2003). https://doi.org/10.1016/S0140-3664(02)00248-7
  7. S. Roundy, P. K. Wright and J. M. Rabaey, Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations (Kluwer Academic Publishers, Boston, 2004).
  8. H. Shen, J. Qiu and M. Balsi, Sens. Actuators A 169, 178 (2011). https://doi.org/10.1016/j.sna.2011.04.043
  9. X. Dai, Y.Wen, P. Li, J. Yang and M. Li, Sens. Actuators A 166, 94 (2011). https://doi.org/10.1016/j.sna.2010.12.025
  10. V. R. Challa, M. G. Prasad, Y. Shi and F. T. Fisher, Smart Mater. Struct. 17, 015035 (2008). https://doi.org/10.1088/0964-1726/17/01/015035
  11. R. Ly, M. Rguiti, S. D'Astorg, A. Hajjaji, C. Courtois and A. Leriche, Sens. Actuators A 168, 95 (2011). https://doi.org/10.1016/j.sna.2011.04.020
  12. I.-H. Kim, H.-J. Jung, B. M. Lee and S.-J. Jang, Appl. Phys. Lett. 98, 214102 (2011). https://doi.org/10.1063/1.3595278
  13. X. Gao, W.-H. Shih and W. Y. Shih, Appl. Phys. Lett. 97, 233503 (2010). https://doi.org/10.1063/1.3521389
  14. J.-S. Park, H.-D. Park and S.-G. Kang, Sens. Actuators A 117, 1 (2005). https://doi.org/10.1016/j.sna.2003.10.069
  15. J. V. Shanahan, E. H. Kisi, J. S. Forrester, H. J. Goodshaw, J. S. Zobec and D. Phelan, J. Am. Ceram. Soc. 93, 3902 (2010). https://doi.org/10.1111/j.1551-2916.2010.03962.x
  16. Z. L. Wang, J. J. Li, Z. H. Sun, Y. L. Li, Q. Luo, C. Z. Gu and Z. Cui, Appl. Phys. Lett. 90, 133118 (2007). https://doi.org/10.1063/1.2718484
  17. K. V. R. Prasad, A. R. Raju and K. B. R. Varma, J. Mater. Sci. 29, 2691 (1994). https://doi.org/10.1007/BF00356819
  18. X.-G. Tang and H. L.-W. Chan, J. Appl. Phys. 97, 034109 (2005). https://doi.org/10.1063/1.1849817
  19. P. Moetakef and Z. A. Nemati, Sens. Actuators A 141, 463 (2008). https://doi.org/10.1016/j.sna.2007.10.005
  20. D. M. Stein, M. R. Suchomel and P. K. Davies, Appl. Phys. Lett. 89, 132907 (2006). https://doi.org/10.1063/1.2357871

Cited by

  1. 0.65Pb(Zr1-xTix)O3-0.35Pb(Zn1/6Ni1/6Nb2/3)O3 세라믹의 압전 특성 및 압전 에너지 하베스터 적용 vol.31, pp.4, 2013, https://doi.org/10.4313/jkem.2018.31.4.216
  2. Energy Harvesting Research: The Road from Single Source to Multisource vol.30, pp.34, 2013, https://doi.org/10.1002/adma.201707271