DOI QR코드

DOI QR Code

Decentralized Frequency Reuse Scheme Supporting Best-Effort Services in Downlink Small-Cell Network

하향링크 스몰셀 네트워크 환경에서 최선형 서비스를 위한 분산적인 주파수 재사용 기법

  • Received : 2012.05.12
  • Accepted : 2012.11.12
  • Published : 2013.04.30

Abstract

When best-effort traffic users are supported in a downlink small-cell network, conventional schemes assign the channels experiencing low co-channel interference at each base station and provide a better downlink performance to the user near its serving base station, so that conventional schemes are not suitable to fairly support all users. In this paper, we propose a decentralized frequency reuse scheme for a small-cell network, where each basestation chooses a set of channels to fairly support the best-effort traffic users regardless of the distances to their serving basestation. After performing the conventional scheme that each basestation selects the channels which are not used in its adjacent basestations, it updates assigned channels improving the performance of low throughput users in a fully distributed manner with mitigating the overall throughput performance loss. The computer simulation demonstrates that the average throughput performance of the 10th percentile throughput users is improved up to 15% in some case compared to that of the conventional scheme, while allowing the overall throughput loss around 3%.

하향링크 스몰셀 네트워크 환경에서 최선형 서비스를 지원해야 할 때, 기존 기법들에서는 각 기지국 기준으로 동일 채널간섭이 가장 적게 수신되는 채널들만을 선택하게 되는데 이 채널들은 해당 기지국에 인접한 사용자의 하향링크 수율 성능만을 향상시킨다. 따라서 기존의 분산 주파수 재사용 기법들은 전체 최선형 서비스 사용자들을 공정하게 지원하지 못한다. 이 논문에서는 하향링크 스몰셀 네트워크 환경에서 기지국으로부터의 거리와 관계없이 최선형 서비스 사용자들의 수율 성능을 공정하게 향상시킬 수 있는 분산 주파수 재사용 기법을 제안한다. 각 기지국은 기존의 분산재사용 기법을 수행하여 주위 기지국들에서 가장 적게 사용되는 채널들을 선택한 다음, 전체 수율 성능의 감소를 줄이면서도 수율성능이 낮은 사용들의 수율성능을 향상시킬 수 있는 채널들로 일부채널들을 교체한다. 모의실험을 통해 제안된 기법은 수율성능 기준 하위 10%에 해당되는 사용자들의 수율성능을 기존기법에 비해 최대 15% 정도 향상시키면서 전체 수율 성능 감소는 3% 정도 허용함을 확인하였다.

Keywords

References

  1. P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi, "CDMA/HDR: A bandwidth efficient high speed wireless data service for nomadic users," IEEE Commun. Mag., vol. 38, no. 7, pp. 70-77, July 2000.
  2. Y. Choi and S. Bahk, "Multichannel wireless scheduling under limited terminal capability," IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 611-617, Feb. 2008. https://doi.org/10.1109/TWC.2008.060592
  3. M. Sternad, T. Ottosson, A. Ahlen, and A. Svensson, "Attaining both coverage and high spectral efficiency with adaptive OFDM downlinks," in Proc. IEEE Veh. Technology Conf., pp. 2486-2490, Orlando, U.S.A., Oct. 2003.
  4. Y. Xiang, J. Luo, and C. Hartmann, "Inter-cell interference mitigation through flexible radio resource reuse in OFDMA based communication networks," in Proc. European Wireless, pp. 1-4, Paris, France, Apr. 2007.
  5. J. Hoydis, M. Kobayashi, and M. Debbah, "Green small-cell networks," IEEE Veh. Technology Mag., vol. 6, no. 1, pp. 37-43, Mar. 2011. https://doi.org/10.1109/MVT.2010.939904
  6. Y. Akaiwa and H. Andoh, "Channel segregation-A self-organized dynamic channel allocation method: application to TDMA/FDMA microcellular system," IEEE J. Select. Areas Commun., vol. 11, no. 6, pp. 949-954, Aug. 1993. https://doi.org/10.1109/49.232305
  7. Y. Furuya and Y. Akaiwa "Channel segregation, a distributed adaptive channel allocation scheme for mobile communication systems," IEICE Trans. Commun., vol. 74, no. 6, pp. 1531-1537, June. 1991.
  8. Y.-Y. Li, M. Macuha, E. Sousa, T. Sato, and M. Nanri, "Cognitive interference management in 3G femtocells," in Proc. IEEE Personal, Indoor Mobile Radio Commun. (PIMRC), pp. 1118-1122, London, U.K., Sep. 2009.
  9. I. Katzela, "Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey," IEEE Personal Commun., vol. 3. no. 3, pp. 10-31, June 1996.
  10. J. Chuang, "Autonomous adaptive frequency assignment for TDMA portable radio systems," IEEE Trans. Veh. Technology, vol. 40, no. 3, pp. 627-635, Aug. 1991. https://doi.org/10.1109/25.97517
  11. J. Ling, D. Chizhik, and R. Valenzuela, "On resource allocation in dense femto-deployments," in Proc. IEEE Int. Conf. Microwaves, Commun., Antennas Electron. Syst. (COMCAS 2009), pp. 1-6, Tel Aviv, Israel, Nov. 2009.
  12. J. Ellenbeck, C. Hartmann, and L. Berlemann, "Decentralized inter-cell interference coordination by autonomous spectral reuse decisions," in Proc. European Wireless Conf., pp. 1-7, Prague, Czech Republic, June 2008.
  13. H. Holma and A. Toskala, LTE for UMTS - OFDMA and SC-FDMA Based Radio Access, Wiley, 2009.
  14. Y. Ki and D. Kim, "Packet scheduling algorithms for throughput fairness and coverage enhancement in TDD-OFDMA downlink network," J. KICS, vol. 30, no. 7A, pp. 611-619, July. 2005.
  15. K. Lee, K. Kook, and D. Oh, "Opportunistic packet scheduling method considering QoS requirement in MMR," J. KICS, vol. 13, no. 6, pp. 185-296, May 2009.
  16. Y. Wang, K. I. Perdersen, T. B. Sorensen, and P. E. Mogensen, "Carrier load balancing and packet scheduling for multi-carrier systems," IEEE Trans. Wireless Commun., vol. 9, no. 5, pp. 1780-1789, May 2010. https://doi.org/10.1109/TWC.2010.05.091310
  17. G. Song, "Utility-based resource allocation and scheduling in OFDM-based wireless broadband networks," IEEE Commun. Mag., vol. 43, no. 12, pp. 127-134, Dec. 2005.
  18. Y. Choi and S. Bahk, "Cell-throughput analysis of the proportional fair scheduler in the single-cell environment," IEEE Trans. Veh. Technology, vol. 56, no. 2, pp. 766-778, Mar. 2007. https://doi.org/10.1109/TVT.2006.889570
  19. J. Zander and S. Kim, Radio resource management for wireless networks, Artech House, 2001.
  20. 3GPP, "Physical layer aspect for evolved universal terrestrial radio access (UTRA)," 3GPP TR 25.814 v7.1.0, 2006.