DOI QR코드

DOI QR Code

Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence

시공단계별 영향을 고려한 터널 전력구의 유한요소해석

  • Kim, Sun-Hoon (Department of Civil & Environmental Engineering, Youngdong Univ.)
  • 김선훈 (영동대학교 토목환경공학과)
  • Received : 2012.12.31
  • Accepted : 20130229
  • Published : 2013.04.30

Abstract

In this paper structural analysis of underground electrical power cable structures which is excavated below the surface of the earth in the downtown area is carried out considering the effect of construction sequence. There are many various life-line facilities below the surface of the earth in the downtown area. MPDAP was used for finite element analysis of underground electrical power cable structures. Three typical sections are simulated by finite element models. Unbalanced equilibrium problems may be occurred when conventional finite element procedures were used for simulation of tunnel excavation. Therefore equilibrium perturbation concept was applied to solve these problems. The effects of time-dependent deformations in advancing tunnel excavation are considered in the stages of construction sequences as using the load distribution factor. It is shown that values of maximum displacement of both soil and rock surrounding underground electrical power cable structures obtained by our numerical studies are less than allowable values.

본 논문에서는 도심지 지하에 터널 전력구를 건설하는 경우 시공단계별 영향을 고려한 구조해석을 수행하였다. 해석대상의 도심지 지하에는 여러 종류의 다양한 라이프라인 구조체가 설치되어 있다. 터널전력구의 구조해석에는 지반체의 유한요소해석 프로그램인 MPDAP을 사용하였다. 라이프라인 구조체와 터널 전력구 사이의 이격거리가 가장 작은 대표적인 3개의 단면에 대하여 구조해석을 수행하였다. 터널의 굴착단계별 유한요소해석에서 발생되는 평형불균형성 문제는 평형섭동개념을 적용하여 해결하였다. 또한 터널 굴착에 의한 시간의존 변형의 영향은 하중분담율을 사용하여 시공단계별로 고려하였다. 본 연구에서 검토한 3개의 대표단면에서는 터널 전력구 주변 지반체에서 발생하는 최대변위값은 허용변위값이내를 보여주었다.

Keywords

References

  1. Bathe, K.J. (1982) Finite Element Procedures, Prentice-Hall, NJ, p.1039.
  2. Coyette, J.P., Guisset, P. (1986) Elasto-plastic Analysis of Underground Excavation Process by the Finite Element Method, Proc. Int. Sym. Large Rock Caverns, 2, B2.8.
  3. Ghaboussi, J., Pecknold, D.A. (1984) Incremental Finite Element Analysis of Geometrically Altered Structures, International Journal for Numerical Methods in Engineering, 20, pp.2051-2064. https://doi.org/10.1002/nme.1620201108
  4. Gioda, G., Swoboda, G. (1999) Developments and Applications of the Numerical Analysis of Tunnels in Continuous Media, International Journal for Numerical and Analytical Methods in Geomechanics, 23, pp.1393-1405. https://doi.org/10.1002/(SICI)1096-9853(199911)23:13<1393::AID-NAG933>3.0.CO;2-Z
  5. Kim, M.K. (2003) Future Directions on Construction of Life-line Facilities in the City, Magazines of Construction Supervision, 10, pp.20-23.
  6. Kim, S.H., Kim, K.J. (2001a) Dynamic Response of Underground Openings Considering the Effect of Water Saturation, Journal of the Computational Structural Engineering, 14(3), pp.391-399.
  7. Kim, S.H., Kim, K.J. (2001b) Three-dimensional Dynamic Response of Underground Openings in Saturated Rock Masses, Earthquake Engineering and Structural Dynamics, 30, pp.765-782. https://doi.org/10.1002/eqe.37
  8. Korea Electric Power Company (2004) Report of Underground Power Cable Structures Connecting Geoyeo and Garak.
  9. Korean Tunneling and Underground Space Association (2005) Evaluation Report of Finite Element Program (MIDAS/GTS) for Geotechnical and Tunnel Analysis, MIDAS IT Company.
  10. Seo, M.W., Seok, J.W., Yang, K.S., Kim, M.M. (2006) Sequential Analysis of Adjacent Ground Behaviors Caused by Deep Excavations, Journal of the Korean Geotechnical Society, 22(2), pp.19-28.
  11. SK Engineering & Construction Co. (2000) Basic Design Report of Underground Power Cable Structures Connecting Siheung and Doksan, Korea Electric Power Company.
  12. Sterling, R.L. (1992) Underground Research : Here and There, Civil Engineering, December, pp.56-58.
  13. Zienkiewicz, O.C., Taylor, R.L. (1989) The Finite Element Method: Basic Formulation and Linear Problems, McGraw‐Hill, London, p.648.