DOI QR코드

DOI QR Code

The Protective Effect of Mineral Water Against UVB Irradiation

미네랄워터의 피부 장벽 보호 효과 연구

  • 이성훈 ((주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 민대진 ((주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 나용주 ((주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 심종원 ((주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 권이경 ((주)아모레퍼시픽 기술연구원 화장품연구소) ;
  • 조준철 ((주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 이해광 ((주)아모레퍼시픽 기술연구원 피부과학연구소)
  • Received : 2012.08.16
  • Accepted : 2012.11.24
  • Published : 2013.03.31

Abstract

Bicationic minerals such as calcium and magnesium are known to protect the skin barrier. The principal objective of this study was to evaluate the skin barrier protective effects of mineral water, which is composed of calcium, magnesium, manganese, and fluorine. UVB irradiation induces a destruction of tight junction (TJ) components. The TJ permeability barrier was also disrupted by UVB irradiation. We employed a skin equivalent model to assess the efficacy of mineral water in this regard. Mineral water maintained the structure of the skin equivalents following UVB irradiation. The results of the TJ permeability assay showed that mineral water helped to maintain the TJ permeability barrier after UVB irradiation in skin equivalent model. Mineral water supported the structure of TJ components and restored the occludin protein level in differentiated normal human keratinocytes after UVB irradiation. In conclusion, we found out the protective effect of mineral water against UVB irradiation.

칼슘, 마그네슘과 같은 양이온은 피부 장벽을 보호하는 기능이 있다고 알려져 있다. 본 연구의 목적은 칼슘, 마그네슘, 망간, 불소로 이루어진 미네랄워터의 피부 장벽 보호 기능을 확인하기 위한 것이다. 피부가 자외선에 노출되게 되면 밀착연접(tight junction, TJ)이 파괴되며, 밀착연접으로 이루어진 피부 장벽도 손상 받게된다. 미네랄워터가 자외선에 의해 손상된 피부의 장벽기능을 보호할 수 있는지 평가하기 위해 인공피부 모델을 이용한 실험을 진행하였다. 인공피부에 자외선을 조사하고 미네랄워터를 처리하면 피부 장벽 손상을 막아준다. TJ permeability assay를 통하여 자외선 처리 시 손상된 밀착연접 장벽이 미네랄워터 처리에 의해 유지되는 것을 확인하였다. 각질형성세포를 이용한 실험에서 미네랄워터가 밀착연접 구조를 유지시켜 주고, 자외선에 의해 감소된 occludin 단백질의 생성량이 회복되는 것을 확인하였다. 따라서 본 연구를 통해 미네랄워터는 자외선에 의한 피부 장벽 파괴를 막아주는 효과가 있음을 확인할 수 있었다.

Keywords

References

  1. J. M. Brandner, S. Kief, C. Grund, M. Rendl, P. Houdek, C. Kuhn, E. E. Tschachler, W. W. Franke, and I. Moll, Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur. J. Cell Biol., 81(5), 253 (2002). https://doi.org/10.1078/0171-9335-00244
  2. E. Fuchs, Epidermal differentiation: the bare essentials. J. Cell. Biol., 111, 2807 (1990). https://doi.org/10.1083/jcb.111.6.2807
  3. R. L. Eckert, J. F. Crish, and N. A. Robinson, The epidermal keratinocytes as a model for the study of gene regulation and cell differentiation. Physiol. Rev., 77, 397 (1997).
  4. R. Ghadially, B. E. Brown, S. M. Sequeira-Martin, K. R. Feingold, and P. M. Elias, The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J. Clin. Invest., 95(5), 2281 (1995). https://doi.org/10.1172/JCI117919
  5. Saima Aijaz, S. Maria, Balda, and Karl Matter, Tight junctions: molecular architecture and function. Int. Rev. Cytol., 248, 261 (2006). https://doi.org/10.1016/S0074-7696(06)48005-0
  6. G. Bazzoni and E. Dejana, Pores in the sieve and channels in the wall: control of paracellular permeability by junctional proteins in endothelial cells. Microcirculation, 8(3), 143 (2001). https://doi.org/10.1111/j.1549-8719.2001.tb00165.x
  7. B. R. Stevenson and B. H. Keon, The tight junction: morphology to molecules. Annu. Rev. Cell. Dev. Biol., 14, 89 (1998). https://doi.org/10.1146/annurev.cellbio.14.1.89
  8. M. Furuse, T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, and S. Tsukita, Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell. Biol., 123, 1777 (1993). https://doi.org/10.1083/jcb.123.6.1777
  9. Y. Ando-Akatsuka, M. Saitou, T. Hirase, M. Kishi, A. Sakakibara, M. Itoh, S. Yonemura, M. Furuse, and S. Tsukita, Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J. Cell. Biol., 133(1), 43 (1996). https://doi.org/10.1083/jcb.133.1.43
  10. K. Fujimoto, Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell. Sci., 108(11), 3443 (1995).
  11. R. Rao, Occludin Phosphorylation in Regulation of Epithelial Tight Junctions. Ann. N. Y. Acad. Sci., 1165(1), 62 (2009). https://doi.org/10.1111/j.1749-6632.2009.04054.x
  12. M. Furuse, H. Sasaki, K. Fujimoto, and S. Tsukita, A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell. Biol., 143(2), 391 (1998). https://doi.org/10.1083/jcb.143.2.391
  13. T. Yuki, A. Hachiya, A. Kusaka, P. Sriwiriyanont, M. O. Visscher, K. Morita, M. Muto, Y. Miyachi, Y. Sugiyama, and S. Inoue, Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes. J. Invest. Dermatol., 131(3), 744 (2011). https://doi.org/10.1038/jid.2010.385
  14. S. Tsukita, M. Furuse, and M. Itoh, Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell. Biol., 2(4), 285 (2001). https://doi.org/10.1038/35067088
  15. M. Furuse, M. Hata, K. Furuse, Y. Yoshida, A. Haratake, Y. Sugitani, T. Noda, A. Kubo, and S. Tsukita, Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell. Biol., 156(6), 1099 (2002). https://doi.org/10.1083/jcb.200110122
  16. M. Denda, C. Katagiri, T. Hirao, N. Maruyama, and M. Takahashi, Some magnesium salts and a mixture of magnesium and calcium salts accelerate skin barrier recovery. Arch. Dermatol. Res., 291(10), 560 (1999). https://doi.org/10.1007/s004030050454
  17. P. Gangatirkar, S. Paquet-Fifield, A. Li, R. Rossi, and P. Kaur, Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat. Protoc., 2(1), 178 (2007). https://doi.org/10.1038/nprot.2006.448
  18. N. Kirschner, P. Houdek, M. Fromm, I. Moll, and J.M. Brandner, Tight junctions form a barrier in human epidermis. Eur. J. Cell. Biol., 89(11), 839 (2010). https://doi.org/10.1016/j.ejcb.2010.07.010
  19. A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. McLean, Filaggrin in the frontline: role in skin barrier function and disease. J. Cell. Sci., 122(9), 1285 (2009). https://doi.org/10.1242/jcs.033969
  20. J. A. McGrath and J. Uitto. The filaggrin story: novel insights into skin-barrier function and disease. Trends. Mol. Med., 14(1), 20 (2008). https://doi.org/10.1016/j.molmed.2007.10.006
  21. L. G. Komuves, K. Hanley, A. M. Lefebvre, M. Q. Man, D. C. Ng, D. D. Bikle, M. L. Williams, P. M. Elias, J. Auwerx, and K. R. Feingold, Stimulation of PPARalpha promotes epidermal keratinocyte differentiation in vivo. J. Invest. Dermatol., 115(3), 353 (2000). https://doi.org/10.1046/j.1523-1747.2000.00073.x
  22. L. G. Komuves, M. Schmuth, A. J. Fowler, P. M. Elias, K. Hanley, M. Q. Man, A. H. Moser, J. M. Lobaccaro, M. L. Williams, D. J. Mangelsdorf, and K. R. Feingold, Oxysterol stimulation of epidermal differentiation is mediated by liver X receptor-beta in murine epidermis. J. Invest. Dermatol., 118(1), 25 (2002). https://doi.org/10.1046/j.0022-202x.2001.01628.x
  23. M. Mao-Qiang, A. J. Fowler, M. Schmuth, P. Lau, S. Chang, B. E. Brown, A. H. Moser, L. Michalik, B. Desvergne, W. Wahli, M. Li, D. Metzger, P. H. Chambon, P. M. Elias, and K. R. Feingold, Peroxisome- proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J. Invest. Dermatol., 123(2), 305 (2004). https://doi.org/10.1111/j.0022-202X.2004.23235.x
  24. M. Schmuth, C. M. Haqq, W. J. Cairns, J. C. Holder, S. Dorsam, S. Chang, P. Lau, A. J. Fowler, G. Chuang, A. H. Moser, B. E. Brown, M. Mao- Qiang, Y. Uchida, K. Schoonjans, J. Auwerx, P. Chambon, T. M. Willson, P. M. Elias, and K. R. Feingold, Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J. Invest. Dermatol., 122(4), 971 (2004). https://doi.org/10.1111/j.0022-202X.2004.22412.x
  25. L. Langbein, C. Grund, C. Kuhn, S. Praetzel, J. Kartenbeck, J. M. Brandner, I. Moll, and W. W. Franke, Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur. J. Cell. Biol., 81(8), 419 (2002). https://doi.org/10.1078/0171-9335-00270
  26. H. Schluter, R. Wepf, I. Moll, and W. W. Franke, Sealing the live part of the skin: the integrated meshwork of desmosomes, tight junctions and curvilinear ridge structures in the cells of the uppermost granular layer of the human epidermis. Eur. J. Cell. Biol., 83(11), 655 (2004). https://doi.org/10.1078/0171-9335-00434
  27. T. Yuki, A. Haratake, H, Koishikawa, K. Morita, Y. Miyachi, and S. Inoue, Tight junction proteins in keratinocytes: localization and contribution to barrier function. Exp. Dermatol., 16(4), 324 (2007). https://doi.org/10.1111/j.1600-0625.2006.00539.x
  28. M. Kurasawa, T. Maeda, A. Oba, T. Yamamoto, and H. Sasaki, Tight junction regulates epidermal calcium ion gradient and differentiation. Biochem. Biophys. Res. Commun., 406(4), 506 (2011). https://doi.org/10.1016/j.bbrc.2011.02.057

Cited by

  1. Beneficial Effects of Desalinated Magma Seawater in Ameliorating Thioacetamide-induced Chronic Hepatotoxicity pp.1976-3816, 2019, https://doi.org/10.1007/s12257-018-0371-9