DOI QR코드

DOI QR Code

Synthesis of Alkylenediaminoalkyl-bis-Phosphonic Acid Derivatives

알킬렌디아미노알킬-비스-포스폰산 유도체의 합성

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2012.12.14
  • Accepted : 2013.03.22
  • Published : 2013.03.30

Abstract

Four kinds of new alkylenediaminoalkyl-bis-phosphonic acid derivatives with alkylenediaminoalkyl functional groups in the molecule were synthesized and their smoke density(Ds) were tested. These alkylenediaminoalkyl-bis-phosphonic acid derivatives were prepared in yields(76-97.3%) by one step reaction of the phosphorus acid with amine and aldehyde. Smoke density was measured by the method of ASTM E 662. The values of smoke density were obtained from 234.7 to 437.9. The smoke density of compounds with two phosphonic acid structures were increased more than that of compounds with one phosphonic acid structure. In addition, there was correlation between the smoke density and the number of nitrogen atoms in amino group attached to mono- or di-phosphonic acids group.

알킬렌디아미노 기능기를 분자 내에 갖는 4종의 새로운 알킬렌디아미노알킬-비스-포스폰산 유도체들을 합성하고, 그들의 연기밀도를 측정하였다. 이 화합물들은 알킬렌디아민 및 알데히드에 인산을 첨가하여 한 단계로 반응시켜 2개의 인산에 2개의 아미노기를 갖는 화합물로서 76~97.3%의 수율을 얻었다. 이들의 연기밀도 시험은 ASTM E 662의 방법으로 측정하였으며, 시험결과 연기밀도(Ds)값이 234.7~437.9으로 측정되었고, 2개의 인산을 갖는 화합물이 1개의 인산구조를 갖는 화합물보다 연기밀도가 증가되었다. 따라서 하나 또는 두 개의 인산에 결합된 아마노기의 질소수와 연기밀도 사이에는 관련이 있었다.

Keywords

References

  1. G. L. Nelson, "Fire and Polymers", American Chemical Society, Washington DC.(1990).
  2. M. Lewis, S. M. Altas, and E. M. Pearce, "Flame-Retardant Polymer Materials", Plenum Press, New York(1975).
  3. S. J. Park, S. W. Song, J. R. Lee, B. G. Min, and J. S. Shin, Cure Kinetics and Rheological Properties of Epoxy Resins Containing Low Toxicity Flame Retardant, J. Korean, Ind. Eng. Chem., 15(1), 41(2004).
  4. M. L. Hardy, Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBPO, OBDPO, PeBDPO and HBCD, Polym. Degrad. Stab., 64, 545(1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  5. Y. Tanaka, "Epoxy Resin chemistry and Technology", Marcel Dekker, New York(1988).
  6. Korean Patent 2010-0128046(2010).
  7. Haiyun Ma, Zhengping Fang, Synthesis and carbonization Chemistry of Phosphorus-nitrogen Based Intrumescent Flame Retardant, Thermochimica Acta 543, 130(2012), https://doi.org/10.1016/j.tca.2012.05.021
  8. Korean Patent 2011-34978(2011).
  9. ISO 5660-2, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 2: Smoke Production Rate (Dynamic measurement)(2002).
  10. Y. J. Chung and E. Jin, Synthesis of Dialkylaminoalkyl Phosphonic Acid and Bis(dialkylaminoalkyl) Phosphinic Acid Derivatives, Appl. Chem. Eng., 23(6), 583(2012).
  11. ASTM E 662, "Test method for Specific Optical Density of Smoke Generated by Solid Materials"(2009)
  12. D. H. Lee, W. S. Jung, D. S. Park, and S. O. Kim, "Smoke Density Characteristics of the FRP Conmposite Panel for Railcars", Proceeding of 2012 Spring Annual Conference, KIFSE, 505(2002).
  13. E. K. Fields, The Synthesis of Esters of Substituted Amino Phosphonic Acids, J. Am. Chem. Soc., 74, 1528(1952). https://doi.org/10.1021/ja01126a054
  14. A. J. Kirby and S. G. Warren, "The Organic Chemistry of Phosphorus", pp. 59-60, Americam Elsevier Publishing Co., Inc., New York(1967).
  15. A. J. Kirby and S. G. Warren, "The Organic Chemistry of Phosphorus", pp. 23-25, Americam Elsevier Publishing Co., Inc., New York(1967).

Cited by

  1. Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives vol.27, pp.5, 2013, https://doi.org/10.7731/KIFSE.2013.27.5.57
  2. Combustion Characteristics of Medium Density Fibreboard (MDF) Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acids vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1066
  3. )s vol.28, pp.3, 2014, https://doi.org/10.7731/KIFSE.2014.28.3.055
  4. Combustive Properties of Medium Density Fibreboard (MDF) Specimens Treated with Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives vol.28, pp.4, 2014, https://doi.org/10.7731/KIFSE.2014.28.4.057
  5. Emission of Carbon Monoxide and Carbon Dioxide Gases during Fire Tests of Specimens Treated with Phosphorus-Nitrogen Additives vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1088
  6. Combustion Properties of Wood Treated by Combining Phosphorus-Nitrogen Compounds vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1116
  7. 알킬렌디아미노알킬-비스-포스폰산으로 처리된 목재의 연소특성 vol.27, pp.6, 2013, https://doi.org/10.7731/kifse.2013.27.6.057
  8. 알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무 시험편의 연소특성 vol.27, pp.6, 2013, https://doi.org/10.7731/kifse.2013.27.6.070
  9. 비스-디메틸아미노메틸 포스핀산과 알킬렌디아미노알킬-비스-포스폰산 유도체에 의해 처리된 중밀도 섬유판의 연소특성 vol.28, pp.5, 2013, https://doi.org/10.7731/kifse.2014.28.5.071
  10. 알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무판의 연소성질 vol.28, pp.6, 2013, https://doi.org/10.7731/kifse.2014.28.6.028
  11. 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리된 시험편의 연소성 vol.26, pp.4, 2013, https://doi.org/10.14478/ace.2015.1068
  12. 연소 시험에서 발생하는 일산화탄소와 이산화탄소의 발생 vol.29, pp.5, 2013, https://doi.org/10.7731/kifse.2015.29.5.007
  13. 인-질소 첨가제로 처리된 리기다 소나무 시험편의 연소특성 vol.29, pp.6, 2013, https://doi.org/10.7731/kifse.2015.29.6.013
  14. 알킬렌디아미노알킬-비스-포스폰산과 비스-디메틸아미노메틸 포스핀산으로 처리된 중질섬유판의 연소가스 발생 vol.28, pp.1, 2013, https://doi.org/10.14478/ace.2016.1121