DOI QR코드

DOI QR Code

Fuel Properties of Various Biodiesels Derived Vegetable Oil

다양한 식물성유지에서 유래된 바이오디젤의 연료 특성

  • Kim, Jae-Kon (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Park, Jo Yong (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Jeon, Cheol Hwan (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Min, Kyong-Il (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Yim, Eui-Soon (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Jung, Choong-Sub (Petroleum Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Lee, Jin-Hui (Department of Chemical Engineering, Seoul National University of Science and Technology)
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 박조용 (한국석유관리원 석유기술연구소) ;
  • 전철환 (한국석유관리원 석유기술연구소) ;
  • 민경일 (한국석유관리원 석유기술연구소) ;
  • 임의순 (한국석유관리원 석유기술연구소) ;
  • 정충섭 (한국석유관리원 석유기술연구소) ;
  • 이진휘 (서울과학기술대학교 화공생명공학과)
  • Received : 2013.02.03
  • Accepted : 2013.03.22
  • Published : 2013.03.30

Abstract

Biodiesel is an alternative diesel fuel which can be obtained from the transesterification of vegetable oils, animal fats and waste cooking oil. The objective of this study is to evaluate the properties of biodiesel obtained from different feedstocks (soybean, waste cooking, rapeseed, cottonseed and palm oils). The biodiesel derived from different feedstocks was analyzed for FAME (fatty acid methyl esther) content, kinematic viscosity, flash point, CFPP (cold filter plugging point) and glycerin content. The quality of biodiesel was tested according to the Korean and European standard (EN14214, requirements and test method for biodiesel fuel). The biodiesels derived from soybean, waste cooking, rapeseed and cottonseed oils contain high amount of unsaturated fatty acid, while palm biodiesel is dominated by saturated fatty acid. The fuel properties of biodiesel, such as low temperature performance, kinematic viscosity and oxidation stability are correlated with the FAME composition components in biodiesel.

바이오디젤은 식물성유지, 동물성유지 그리고 폐식용유를 전이에스테르화 반응을 시켜 만들어진 것으로 경유를 대체할 수 있는 연료이다. 본 연구에서는 다양한 원료의 식물성유지 (대두유, 폐식용유, 유채유, 면실유, 팜유)로부터 얻어진 바이오디젤의 연료 특성을 알아보았다. 다양한 식물성유지 원료로부터 얻어진 바이오디젤은 지방산메틸에스테르 함량, 동점도, 인화점, 필터막힘점, 글리세린 함량을 분석하였다. 바이오디젤의 품질기준과 시험방법은 한국 표준과 유럽 표준인 EN14214에 따라 시험하였다. 대두유, 폐식용유, 유채유, 면실유 바이오디젤은 불포화지방산이 많이 포함되어 있는 반면에 팜유 바이오디젤은 포화지방산이 많이 함유되어 있다. 저온특성, 동점도, 산화안정도와 같은 바이오디젤의 연료 특성은 지방산메틸에스테르의 구성 성분과 관련이 깊다.

Keywords

References

  1. S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Review of Biodiesel Composition, Poperties, and Specifications, Renew. Sustain. Energy Rev., 16, 143 (2012). https://doi.org/10.1016/j.rser.2011.07.143
  2. J. -K. Kim, C. H. Jeon, E. S. Yim, C. S. Jung, S. B. Lee, Y. J. Lee and M. J. Kang, A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel, J. Kor. Oil Chem. Soc., 29, 450 (2012).
  3. J. -K. Kim, C. H. Jeon, E. S. Yim and C. S. Jung, A Study on the Fuel Characteristics of Hydrotreated Biodiesel (HBD) for Alternative Diesel Fuel, J. Kor. Oil Chem. Soc., 28, 508 (2011).
  4. IEA. 2009, "World Energy Outlook", International Energy Agency. OECD/Paris.
  5. Hart's Global Biofuel Center, 2010, "Global Biofuels Outlook 2010-2020", Houston, USA.
  6. J. -K. Kim, E. S. Yim and C-. S. Jung, Study on Comparison of Global Biofuels Mandates Policy in Transport Sector, New & Renewable Energy, 7, 18 (2011).
  7. Y. J. Hyun, Conversion of Mixed Fat into Biodiesel in Plug Flow Reactor Using Alkali and Mixed Catalysts, J. Kor. Oil Chem. Soc., 27, 123 (2010).
  8. Y. J. Hyun and H. S. Kim, Conversion of Rapeseed Oil Containing Palmitic Acid into Biodiesel by Acid/Alkali Catalysts, J. Kor. Oil Chem. Soc., 23, 300 (2006).
  9. Y. J. Hyun and H. S. Kim, Conversion of Vegetable Oil into Biodiesel Fuel by Continuous Process, J. Kor. Oil Chem. Soc., 19, 327 (2002).
  10. Y. M. Kang and H. S. Kim, Emulsified Transesterification of Soybean Oil into Biodisel, J. Kor. Oil Chem. Soc., 18, 298 (2001).
  11. S. P. Singh and D. Singh, Biodiesel Production through the Use of Different Sources and Characterization of Oils and their Esters as the Substitute of Diesel: a Review, Renew. Sustain. Energy Rev., 14, 200 (2010). https://doi.org/10.1016/j.rser.2009.07.017
  12. C. Carraretto, A. Macor, A. Mirandola, A. Stoppato and S. Tonon, Biodiesel as Alternative Fuel: Experimental Analysis and Energetic Evaluations, Energy Convers. Manage., 29, 2195 (2004).
  13. P. V. Bhale, N. V. Deshpande and S. B. Thombre, Improving the Low Temperature Properties of Biodiesel Fuel, Renew. Energy, 34, 794 (2009). https://doi.org/10.1016/j.renene.2008.04.037
  14. M. Canakci, K. G. Sanli and K. R. Steidley, Kinematic Viscosity of Biodiesel Components (Fatty Acid Alkyl Esters) and Related Compounds at Low Temperatures, Fuel, 86, 2560 (2007). https://doi.org/10.1016/j.fuel.2007.02.006
  15. H. Imahara, E. Minami and S. Saka, Thermodynamic Study on Cloud Point of Biodiesel with its Fatty Acid Composition, Fuel, 85, 1666 (2006). https://doi.org/10.1016/j.fuel.2006.03.003
  16. C. R. Krishna, K. Thomassen, C. Brown, T. A. Butcher, M. Anjom and D. Mahajan, Cold Flow Behavior of Biodiesels Derived from Biomass Sources, Ind. Eng. Chem. Res., 46, 8846 (2007). https://doi.org/10.1021/ie070110f
  17. M. Satyanarayana and C. Muraleedharan, A Comparative Study of Vegetable Oil Methyl Esters (Biodiesels), Energy, 36, 2129 (2010).
  18. A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki and S. Mekhilef, A Comprehensive Review on Biodiesel as an Alternative Energy Resource and its Characteristics, Renew. Sustain. Energy Rev., 16, 2070 (2012). https://doi.org/10.1016/j.rser.2012.01.003
  19. J. P. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim and J. S. Lee, Blending Effects of Biodiesels on Oxidation Stability and Low Temperature Flow Properties, Bioresource Technology, 99, 1196 (2008). https://doi.org/10.1016/j.biortech.2007.02.017
  20. R. O. Dunn, Antioxidants for Improving Storage Stability of Biodiesel, Biofuels Bioproducts and Biorefining, 2, 304 (2008). https://doi.org/10.1002/bbb.83
  21. C. Y. Lin and C. C. Chiu, Effects of Oxidation during Long-term Storage on the Fuel Properties of Palm Oil-based Biodiesel, Energy Fuels, 23, 3285 (2009). https://doi.org/10.1021/ef900105t
  22. M. Canakci and H. Sanli, Biodiesel Production from Various Feedstocks and their Effects on the Fuel Properties, J. Ind. Microbiol. Biotechnol., 35, 431 (2010).
  23. J. Rodrigues, F. Cardoso, E. Lachter, L. Estevao, E. Lima and R. Nascimento, Correlating Chemical Structure and Physical Properties of Vegetable Oil Esters, J. Am. Oil Chem. Soc., 83, 353 (2006). https://doi.org/10.1007/s11746-006-1212-0
  24. I. M. Atadashi, M. K. Aroua and A. A. Abdul, High Quality Biodiesel and its Diesel Engine Application: a Review, Renew. Sustain. Energy Rev., 14, 1999 (2010). https://doi.org/10.1016/j.rser.2010.03.020
  25. J. -K. Kim, E. S. Yim, C. H. Jeon, C. S. Jung and B. H. Han, Cold Performance of Various Biodiesel Fuel Blends at Low Temperature, Int. J. Automotive Technology, 13, 293 (2012). https://doi.org/10.1007/s12239-012-0027-2

Cited by

  1. Analysis of Fatty Acid Compositions and Biodiesel Properties of Seeds of Woody Oil Plants in Korea vol.26, pp.5, 2013, https://doi.org/10.7732/kjpr.2013.26.5.628
  2. Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME vol.31, pp.1, 2014, https://doi.org/10.12925/jkocs.2014.31.1.113
  3. Effects of Nitrile Group Substitution on the Physical Properties of Some Ionic Liquids vol.31, pp.2, 2014, https://doi.org/10.12925/jkocs.2014.31.2.225
  4. 글로벌 측면에서 본 바이오디젤의 현황과 전망 vol.30, pp.3, 2013, https://doi.org/10.12925/jkocs.2013.30.3.528
  5. 발전용 바이오중유용 원료물질의 품질특성 연구 vol.32, pp.1, 2013, https://doi.org/10.12925/jkocs.2015.32.1.136
  6. 산성백토를 이용한 저온압착 유채유의 탈색 평가 vol.33, pp.3, 2013, https://doi.org/10.12925/jkocs.2016.33.3.560
  7. 하수슬러지 유래 액상 바이오연료화 기술 및 연료 특성 vol.35, pp.2, 2013, https://doi.org/10.12925/jkocs.2018.35.2.540
  8. 효소 촉매를 이용한 고산가 폐유지 유래 바이오디젤 합성 vol.35, pp.4, 2018, https://doi.org/10.12925/jkocs.2018.35.4.1048
  9. 인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석 vol.36, pp.1, 2013, https://doi.org/10.12925/jkocs.2019.36.1.324