DOI QR코드

DOI QR Code

Antimicrobial Coating Agent

항균 코팅제

  • Ko, Jong-Sung (Korea Institute of Science and Technology Information)
  • Received : 2013.02.20
  • Accepted : 2013.03.25
  • Published : 2013.03.30

Abstract

This article describes the concept and the trend of antimicrobial coating agents, which will help to establish the direction of the research and development on antimicrobial coating agent. Antimicrobial agents are compounds that inhibit or kill microorganisms. They are classified into inorganic, metallic, low molecular weight organic, natural organic, and polymeric compounds. Antimicrobial coatings are applied to the surface of daily necessities, medical devices, industrial products, electrical appliances, fabrics, and interior building materials, etc. Conventional antibiotics penetrate microbes without damaging bacterial cell walls, leading to drug resistance which polymeric antimicrobials can prevent by disrupting cell walls. Most polymeric antimicrobials are focused on cationic polymers. Improvement in the selectivity and durability of antimicrobials and reduction of their toxicity will come true by more reasonable design of molecular structures and their combination in coating system.

본 연구는 항균성 코팅제의 개념과 동향파악으로 항균성 코팅제의 연구개발의 방향을 설정하는데 도움을 주기 위한 것이다. 항균제는 미생물을 제거하거나 성장을 저지하는데 사용되는 화합물이며 항균 코팅제에 함유되는 항균제용 재료는 무기물, 금속, 저분자 유기물, 천연유기물, 고분자가 있다. 항균코팅제는 생활용품, 병원용품, 산업용품, 전자제품, 의류, 건축 내장재 등의 표면의 항균성 부여에 쓰인다. 기존 항생제는 세균의 세포벽을 손상하지 않고 미생물을 침투하나 항균성 고분자는 세포막을 파괴하므로 항생제의 내성을 방지할 수 있다. 대부분의 고분자 항균제는 양이온 고분자에 초점을 맞추고 있다. 항균제의 분자설계와 코팅제 배합의 합리화로 항균제의 선택성, 내구성, 독성 문제가 개선될 것이다.

Keywords

References

  1. K. Glinel et al., Antibacterial surfaces developed from bio-inspired approaches", Acta Biomaterialia 8, 1670 (2012) https://doi.org/10.1016/j.actbio.2012.01.011
  2. Amanda C. Englera et al., "Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections", Nano Today, 7, 201 (2012) https://doi.org/10.1016/j.nantod.2012.04.003
  3. Haugh BE et al., "The medicinal chemistry of short lactoferricin-based antibacterial peptides", Curr. Med. Chem., 14, 1 (2007) https://doi.org/10.2174/092986707779313435
  4. M. Mohorcic et al., Surface with antimicrobial activity obtained through silane coating with covalently bound polymyxin B, J. Mater. Sci. Mater. Med., 21, 2775 (2010) https://doi.org/10.1007/s10856-010-4136-z
  5. Glinel K et al., Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug. Chem., 20, 71 (2009). https://doi.org/10.1021/bc800280u
  6. Fabiola Costa et al., Covalent immobilization of antimicrobial peptides(AMPs) onto biomaterial surfaces Acta Biomaterialia, 7, 1431 (2011) https://doi.org/10.1016/j.actbio.2010.11.005
  7. Yuan S et al. Lysosymecoupled poly (ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir, 27, 2761 (2011) https://doi.org/10.1021/la104442f
  8. Tasso M et al., Covalent immobilization of subtilisin A onto thin films of maleic anhydride copolymers. Macromol .Biosci., 9, 922 (2009) https://doi.org/10.1002/mabi.200900005
  9. Cordeiro AL et al., Immobilized enzymes affect biofilm formation. Biotechnol. Lett., 33, 1897 (2011) https://doi.org/10.1007/s10529-011-0643-3
  10. Tasso M et al., Antifouling potential of Subtilisin A immobilized onto of maleic anhydride copolymer thin films. Biofouling, 25, 505 (2009) https://doi.org/10.1080/08927010902930363
  11. Alexandra Munoz-Bonilla et al., Polymeric materials with antimicrobial activity, Progress in Polymer Science, 37, 281 (2012) https://doi.org/10.1016/j.progpolymsci.2011.08.005
  12. Limei Chen et al., Chemical assembly of silver nanoparticles on stainless steel for antimicrobial applications, Surface & Coatings Technology, 204, 3871 (2010) https://doi.org/10.1016/j.surfcoat.2010.05.003
  13. Xingjie Zan et al., Polyelectrolyte multilayer films containing silver as antibacterial coatings, Thin Solid Films, 518, 5478 (2010) https://doi.org/10.1016/j.tsf.2010.04.022
  14. Roberto Guerra et al., Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites, Microporous and Mesoporous Materials, 147, 267 (2012) https://doi.org/10.1016/j.micromeso.2011.06.031
  15. Wouter et al., Novel Antimicrobial Coatings and Surfaces, Eindhoven University of Technology, 1 (2006)
  16. Tiller JC et al., Designing surfaces that kill bacteria on contact. Proc. Nat.l Acad. Sci. USA, 98, 5981 (2001) https://doi.org/10.1073/pnas.111143098
  17. Tiller JC et al., Polymer surfaces derivatized with poly(vinyl- Nhexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng., 79, 465 (2002) https://doi.org/10.1002/bit.10299
  18. Sellenet PH et al., Synergistic activity of hydrophilic modification in antibiotic polymers, Biomacromolecules, 8, 19 (2007) https://doi.org/10.1021/bm0605513
  19. Allison BC et al., Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules, 8, 2995 (2007) https://doi.org/10.1021/bm7004627
  20. Sambhy V et al, Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew. Chem. Int. Ed., 47, 1250 (2008) https://doi.org/10.1002/anie.200702287
  21. Sharma S, Chauhan G, Gupta R, Ahn JH. Tuning anti-microbial activity of poly(4-vinyl 2-hydroxyethyl pyridinium) chloride by anion exchange reactions. J. Mater. Sci. Mater. Med., 2, 717 (2010)
  22. Timofeeva LM et al., Secondary and tertiary polydiallylammonium salts: novel polymers with high antimicrobial activity. Biomacromolecules, 10, 2976 (2009) https://doi.org/10.1021/bm900435v
  23. Sauvet G et al., Biocidal polymers active by contact,. V. Synthesis of polysiloxanes with biocidal activity. J Appl .Polym. Sci., 75, 1005 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000222)75:8<1005::AID-APP5>3.0.CO;2-W
  24. Abel T et al, Preparation and investigation of antibacterial carbohydratebased surfaces. Carbohydr. Res., 337, 2495 (2002) https://doi.org/10.1016/S0008-6215(02)00316-6
  25. Dizman B et al., Synthesis and antimicrobial activities of new watersoluble bis-quaternary ammonium methacrylate polymers. J. Appl. Polym. Sci., 94, 635 (2004) https://doi.org/10.1002/app.20872
  26. Lu G et al., Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React. Funct. Polym., 67, 355 (2007) https://doi.org/10.1016/j.reactfunctpolym.2007.01.008
  27. Zhang Z et al., The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials, 29, 4719 (2008) https://doi.org/10.1016/j.biomaterials.2008.08.030
  28. Zhang Z et al., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. B, 110, 10799 (2006)
  29. Cheng G et al., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 28, 4192 (2007) https://doi.org/10.1016/j.biomaterials.2007.05.041
  30. Zhang Z et al., Dual-functional biomimetic materials: nonfouling poly (carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 27, 3311 (2006)
  31. Venkataraman S et al., Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials, 31, 1751 (2010) https://doi.org/10.1016/j.biomaterials.2009.11.030
  32. Lu L et al., Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir, 21, 10154 (2005) https://doi.org/10.1021/la046987q
  33. Chemburu S et al., Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir, 24, 11053 (2008) https://doi.org/10.1021/la8016547
  34. Corbitt TS et al., Conjugated polyelectrolyte capsules: light-activated antimicrobial micro roach motels. ACS Appl. Mater. Interfaces, 1, 48 (2009) https://doi.org/10.1021/am800096q
  35. Wang Y et al., Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes. Langmuir, 26, 12509 (2010) https://doi.org/10.1021/la102269y
  36. Mizerska U et al., Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties. Eur. Polym. J., 45, 779 (2009) https://doi.org/10.1016/j.eurpolymj.2008.11.045
  37. Hoogenboom R. Poly(2-oxazoline)s: a polymer class with numerous potential applications. Ang. Chem. Int. Ed., 48, 7978 (2009) https://doi.org/10.1002/anie.200901607
  38. Makino A et al., Chemistry of 2-oxazolines: a crossing of cationic ring-opening polymerization and enzymatic ring-opening polyaddition. J. Polym. Sci. Part A Polym. Chem., 48, 1251 (2010) https://doi.org/10.1002/pola.23906
  39. Adams N et al., Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug. Deliv. Rev., 59, 1504 (2007) https://doi.org/10.1016/j.addr.2007.08.018
  40. Waschinski CJ et al., Poly(oxazoline)s with telechelic antimicrobial functions, Biomacromolecules, 6, 235 (2005) https://doi.org/10.1021/bm049553i
  41. Waschinski CJ et al., Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol. Biosci., 5, 149 (2005) https://doi.org/10.1002/mabi.200400169
  42. Waschinski CJ et al., Insights in the antibacterial act.ion of poly (methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules, 9, 1764 (2008) https://doi.org/10.1021/bm7013944
  43. Harney MB et al., Surface selfconcentrating amphiphilic quaternary ammonium biocides as coating additives. ACS Appl. Mater. Interfaces, 1, 39 (2009) https://doi.org/10.1021/am800046r
  44. Cakmak I et al., Synthesis and characterization of novel antimicrobial cationic polyelectrolytes. Eur. Polym. J, 40, 2373 (2004) https://doi.org/10.1016/j.eurpolymj.2004.06.004
  45. Zhang Y et al., Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer, 40, 6189 (1999) https://doi.org/10.1016/S0032-3861(98)00828-3
  46. Feiertag P et al., Structural characterization of biocidal oligoguanidines. Macromol. Rapid Commun., 24, 567 (2003) https://doi.org/10.1002/marc.200390085
  47. Albert M et al., Structure-ctivity relationships of oligoguanidines - influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules, 4, 1811 (2003) https://doi.org/10.1021/bm0342180
  48. Marr AK et al., Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol., 6, 468 (2006) https://doi.org/10.1016/j.coph.2006.04.006
  49. Halevy R et al., Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides, 24, 1753 (2003) https://doi.org/10.1016/j.peptides.2003.08.019
  50. Tamaki M et al., Syntheses of lowhemolytic antimicrobial gratisin peptides. Bioorg. Med. Chem. Lett., 19, 2856 (2009) https://doi.org/10.1016/j.bmcl.2009.03.133
  51. Epand RF et al., Antimicrobial 14-helical peptides: potent bilayer disrupting agents. Biochemistry(Mosc), 43, 9527 (2004) https://doi.org/10.1021/bi049414l
  52. Porter EA et al., Nonhaemolytic -amino-acid oligomers. Nature, 404, 565 (2000) https://doi.org/10.1038/35007145
  53. Schmitt MA et al., Unexpected relationships between structure and function in $\alpha\beta$-peptides, antimicrobial foldamers with heterogeneous backbones. J. Am. Chem. Soc., 126, 6848 (2004) https://doi.org/10.1021/ja048546z
  54. Schmitt MA et al., Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of $\alpha$/ $\beta$-peptides. J. Am. Chem. Soc., 129, 417 (2006)
  55. Ilker MF et al., Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc., 126, 15870 (2004) https://doi.org/10.1021/ja045664d
  56. Gabriel GJ et al., Synthetic mimic of antimicrobial peptide with nonmembranedisrupting antibacterial properties. Biomacromolecules, 9, 2980 (2008) https://doi.org/10.1021/bm800855t
  57. Kugel AJ et al., Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J. Coat. Technol. Res., 6, 107 (2009) https://doi.org/10.1007/s11998-008-9124-6
  58. Sun Y et al., Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J. Polym. Sci. Part A Polym. Chem., 39, 3073 (2001)
  59. Kenawy ER et al., Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl m e t h a c r y l a t e - c o - 2 - h y d r o x y e t h y l methacrylate) derivatives with quaternary ammonium and phosphonium salts. J. Polym. Sci. Part A Polym. Chem., 40, 2384 (2002) https://doi.org/10.1002/pola.10325
  60. Kenawy ER et al., Biologically active polymers, 6a: synthesis and antimicrobial activity of some linear copolymers with quaternary ammonium and phosphonium groups. Macromol. Biosci., 3, 107 (2003) https://doi.org/10.1002/mabi.200390016
  61. Kenawy E-R et al., Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. React. Funct. Polym., 66, 419 (2006) https://doi.org/10.1016/j.reactfunctpolym.2005.09.002
  62. Mahmoud Y et al., Anti-Candida and mode of action of two newly synthesized polymers: a modified poly (methylmethacrylate-co-vinylbenzoylchlorid e) and a modified linear poly (chloroethylvinylether-co-vinylbenzoylchlori de) with special reference to Candida albicans and Candida tropicalis. Mycopathologia, 157, 145 (2004) https://doi.org/10.1023/B:MYCO.0000020593.75809.91
  63. Kenawy ER et al., Biologically active polymers. IV. Synthesis and antimicrobial activity of tartaric acid polyamides. J. Appl. Polym. Sci., 102, 4780 (2006) https://doi.org/10.1002/app.24126
  64. Park ES et al., Antimicrobial activity of phenol and benzoic acid derivatives. Int. Biodeterior. Biodegrad., 47, 209 (2001) https://doi.org/10.1016/S0964-8305(01)00058-0
  65. Kenawy ER et al., Antimicrobial properties of modified and electrospun poly(vinyl phenol). Macromol. Biosci., 2, 261 (2002) https://doi.org/10.1002/1616-5195(200208)2:6<261::AID-MABI261>3.0.CO;2-2
  66. Subramanyam E et al., Synthesis, characterization, and evaluation of antifouling polymers of 4-acryloyloxybenzaldehyde with methyl methacrylate. J. Appl. Polym. Sci., 112, 2741 (2009) https://doi.org/10.1002/app.29313
  67. Al-Muaikel NS et al., Synthesis and characterization of novel organotin monomers and copolymers and their antibacterial activity. J. Appl. Polym. Sci.., 77, 740 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000725)77:4<740::AID-APP4>3.0.CO;2-P
  68. Westman E-H et al., Assessment of antibacterial properties of polyvinylamine (PVAm) with different charge densities and hydrophobic modifications. Biomacromolecules, 10, 1478 (2009) https://doi.org/10.1021/bm900088r
  69. M.B. Yagci et al., Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds, Progress in Organic Coatings, 72, 343 (2011) https://doi.org/10.1016/j.porgcoat.2011.05.006
  70. De Queiroz AAA et al., Physicochemical and antimicrobial properties of boron-complexed polyglycerol-hitosan dendrimers. J Biomater. Sci .Polym. Ed., 17, 689 (2006) https://doi.org/10.1163/156856206777346313
  71. Partha Majumdar et al., Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS, Polymer, 50, 1124 (2009) https://doi.org/10.1016/j.polymer.2009.01.009
  72. Klasimir Vasilev et al., Antibacterial Surfaces for biomedical devices, Expert Rvi. Med. Devices., 6, 553 (2009) https://doi.org/10.1586/erd.09.36
  73. J.M. Goddard et al., Polymer surface modification for the attachment of bioactive compounds, Prog. Polym. Sci., 32, 698 (2007) https://doi.org/10.1016/j.progpolymsci.2007.04.002
  74. Alex Kugel et al., Antimicrobial coatings produced by "tethering" biocides to the coating matrix: A comprehensive review, Progress in Organic Coatings, 72, 222 (2011) https://doi.org/10.1016/j.porgcoat.2011.07.004
  75. Laura Sisti et al., Antibacterial coatings on poly(fluoroethylenepropylene) films via grafting of 3-hexadecyl-1-vinylimidazolium bromide, Progress in Organic Coatings, 73, 257 (2012) https://doi.org/10.1016/j.porgcoat.2011.11.018
  76. Paul J. Nowatzki et al., Salicylic acidreleasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings, Acta Biomaterialia, 8, 1869 (2012) https://doi.org/10.1016/j.actbio.2012.01.032
  77. Kugel A et al., Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin. Polym. Chem., 1, 442 (2010) https://doi.org/10.1039/b9py00309f
  78. Hang Liu et al, Antimicrobial Properties and Release Profile of Ampicillin from Electrospun Poly($\varepsilon$-caprolactone) Nanofiber Yarns", Journal of Engineered Fibers and Fabrics, 5, 10 (2010)
  79. T.V.P. Doan et al., Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery, International Journal of Pharmaceutics, 414 112 (2011) https://doi.org/10.1016/j.ijpharm.2011.05.007
  80. Guyomard A et al., Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv. Funct Mater., 18, 758 (2008) https://doi.org/10.1002/adfm.200700793
  81. Manefield M et al., Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein, Microbiology, 145, 283 (1999) https://doi.org/10.1099/13500872-145-2-283

Cited by

  1. 산수유 종자 추출물의 화장품 방부효능에 관한 연구 vol.33, pp.2, 2013, https://doi.org/10.12925/jkocs.2016.33.2.333
  2. Assessment of relationship between the use of household products and atopic dermatitis in Seoul: focused on products with associated risks vol.34, pp.2, 2019, https://doi.org/10.5620/eht.e2019006