Porous silicon carbide ceramics from silicon and carbon mixture

  • Lee, Dong Hwa (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Jong Chan (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Deug Joong (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • Published : 2013.06.01

Abstract

Porous SiC ceramics were fabricated from a mixture of silicon (Si) and carbon (C). The Si and C mixture was treated first at $1500^{\circ}C$ for the formation of ${\beta}$-SiC and then heated further up to $2150^{\circ}C$. When the ${\beta}$-SiC particles that were transformed into ${\beta}$-SiC at over $2100^{\circ}C$, the rapid grain growth of ${\alpha}$-SiC consumed the ${\beta}$-matrix SiC particles and ultimately porous interconnected network structure with huge elongated plate-like grains was formed. The effect of the initial composition on the microstructure formation of the porous SiC ceramics was investigated. The mechanical properties of the porous SiC ceramics were examined and discussed.

Keywords

Acknowledgement

Supported by : Ministry of Knowledge Economy

References

  1. Y.W. Kim, J.G. Lee, J. Kor. Ceram. Soc. 20 (1983) 115-122.
  2. S.S. Whang, S.W. Park, H.H. Han, K.S. Han, C.M. Kim, J. Kor. Ceram. Soc. 39 (2002) 948-954. https://doi.org/10.4191/KCERS.2002.39.10.948
  3. W. Wu, T. Fujiju, G.L. Messing, J. Mater. Sci. 34 (1999) 3189-3202. https://doi.org/10.1023/A:1004681806843
  4. F.F. Lange, K.T. Miller, Adv. Ceram. Mater. 2 (1987) 827-831. https://doi.org/10.1111/j.1551-2916.1987.tb00156.x
  5. M. Fukushima, M. Nakata, Y. Zhou, T. Ohji, Y.-I. Yoshizawa, J. Eur. Ceram. Soc. 30 (2010) 2889-2896. https://doi.org/10.1016/j.jeurceramsoc.2010.03.018
  6. G.L. Liu, P.Y. Dai, Y.A. Wang, J.F. Yand, and G.J. Qiao, Mater. Sci. Eng. 528 (2011) 2418-2422. https://doi.org/10.1016/j.msea.2010.12.063
  7. J.H. Eom, Y.W. Kim, I.H. Song, H.D. Kim, J. Eur. Ceram. Soc. 28 (2008) 1029-1035. https://doi.org/10.1016/j.jeurceramsoc.2007.09.009
  8. A. Dey, N. Kayal, O. Chakrabarti, Ceram. Intl. 37 (2011) 223-230. https://doi.org/10.1016/j.ceramint.2010.09.022
  9. Y.S. Kim, K.S. Min, J.I. Shim and D.J. Kim, J. Eur. Ceram. Soc., in press.
  10. L. Shi, H. Zhao, Y. Yan, Z. Li, C. Tang, Powder Tech. 169 (2006) 71-76. https://doi.org/10.1016/j.powtec.2006.08.003
  11. S. Sugiyama, M. Togaya, J. Am. Soc. 84 [12] (2001) 3013-3016.
  12. K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano, S.-I. Nishizawa, J. Crystal Growth, 324 (2011) 78-81. https://doi.org/10.1016/j.jcrysgro.2011.03.059
  13. S.K. Lilov, Mater. Sci. Eng. B 21 (1993) 65-69. https://doi.org/10.1016/0921-5107(93)90267-Q
  14. S.C. Singhal, Ceramurgia Intl. 2 [3] (1976) 123-130. https://doi.org/10.1016/0390-5519(76)90022-3
  15. S.K. Lilov, Diamond and Related Mater. 4 (1995) 1331-1334. https://doi.org/10.1016/0925-9635(95)00312-6
  16. S.-J.L.Kang, in "Sintering:Densification, Grain Growth and Microstructure" (Butterworth-Heineman Press, 2005) p. 48-49.
  17. K.Y. Lim, Y.-W.Kim, I.-H.Song, and J.-S. Bae, J. Kor. Ceram. Soc. 48 [5] (2011) 360-367. https://doi.org/10.4191/kcers.2011.48.5.360
  18. S.-H. Chae, Y.-W.Kim, I.-H.Song, H.-D. Kim, M. Narisawa, J. Eur. Ceram. Soc. 29 (2009) 2867-2872. https://doi.org/10.1016/j.jeurceramsoc.2009.03.027
  19. P. Colombo, J.R. Hellmann, and D.L. Shelleman, J. Am. Ceram. Soc. 84 (2001) 2245-2251.