DOI QR코드

DOI QR Code

S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method

수신함수 역산 및 H-κ 중합법을 이용한 제주도 하부의 S파 지각 속도

  • Jeon, Taehyeon (Geological Research Division, KIGAM) ;
  • Kim, Ki Young (Department of Geophysics, Kangwon National University) ;
  • Woo, Namchul (Earthquake Detection Division, Korea Meteorological Administration)
  • 전태현 (한국지질자원연구원 국토지질연구본부) ;
  • 김기영 (강원대학교 지구물리학과) ;
  • 우남철 (기상청 지진감시과)
  • Received : 2012.12.18
  • Accepted : 2013.02.12
  • Published : 2013.02.28

Abstract

Shear-wave velocity ($v_s$) structures beneath two seismic stations, JJU and JJB on the flanks of the volcano Halla on Jeju island, Korea, were estimated by receiver-function inversion and H-${\kappa}$ stacking applied to 150 teleseismic events ($M_W{\geq}5.5$) recorded since 2007. $P_S$ waves converted at the Moho discontinuity does not appear clearly for northwesterly back-azimuths ($207{\sim}409^{\circ}$, average $308^{\circ}$) at station JJU and southeasterly back-azimuths ($119{\sim}207^{\circ}C$, average $163^{\circ}$) at station JJB. This may be due to a gradual velocity increase at Moho or heterogeneity within the crust. The $v_s$ models derived by inversion of receiver functions indicate a distinct low velocity layer ($v_s{\leq}3.5km/s$; LVL) within the crust and a gradual increase in $v_s$ in the depth interval of 30 to 40 km. Within the radius of 18 km beneath station JJB, the LVL occurs at depths of 14 ~ 26 km and the 'Moho' ($v_s{\geq}4.3km/s$) is at 34 km depth. Ten kilometers to the west, within the radius of 16 km beneath station JJU, both the LVL and the Moho are significantly shallower, at depths of 14 to 24 km and 30 km, respectively. H-${\kappa}$ analyses for stations JJU and JJB yield estimated crustal thickness of 29 and 33 km and $v_p/v_s$ ratios of 1.64 and 1.75, respectively. The lesser $v_p/v_s$ ratio was derived for rocks nearest to th peak of the volcano.

제주도 한라산 주위에 위치한 JJU와 JJB 관측소 하부의 S파 속도구조를 규명하기 위하여, 이 관측소에서 2007년 이후 기록한 $M_W$ 5.5 이상인 원격 지진자료 중 150개 수신함수를 이용하여 역산 및 H-${\kappa}$ 중합법에 적용하였다. 모호면에서 변환된 $P_S$파는 JJU 관측소의 북서쪽(후방위각 $207{\sim}409^{\circ}$, 평균 $308^{\circ}$)과 JJB 관측소의 남동쪽(후방위각 $119{\sim}207^{\circ}$, 평균 $163^{\circ}$) 방향으로 뚜렷하지 않게 나타났다. 이것은 아마도 모호면의 점이적인 속도변화나 지각 내의 속도 불균질층 때문일 수 있다. 수신함수 역산으로부터 계산된 S파 속도모델은 지각 내의 저속도층을 뚜렷이 보여주며, 30 ~ 40 km 깊이에서 점이적으로 증가하는 양상을 보인다. JJB 관측소 반경 18 km 이내에서 저속도층($v_s{\leq}3.5km/s$)은 14 ~ 26 km에 있고, $v_s{\geq}4.3km/s$으로 정의한 '모호면'은 34 km 깊이에 있는 것으로 분석되었다. 서쪽으로 약 10 km 떨어진 곳에 위치한 JJU 관측소의 반경 16 km 이내에서는 저속도층과 '모호면'이 14 ~ 24 km와 30 km에 각각 존재하여 JJB 관측소에 비해 다소 얕은 깊이에서 나타난다. JJU와 JJB 관측소에 대한 H-${\kappa}$ 분석결과는 지각 두께가 29 km와 33 km이며, 종파/횡파 속도비($v_p/v_s$)가 1.64과 1.75임을 각각 나타내어 화산 정상에 가까운 곳에서 상대적으로 낮은 $v_p/v_s$가 관찰되었다.

Keywords

References

  1. Agostinetti, N. P., and Amato, A., 2009, Moho depth and $V_P/V_S$ ratio in peninsular Italy from teleseismic receiver functions, Journal of Geophysical Research, 114, B06303. https://doi.org/10.1029/2008JB005899
  2. Ammon, C. J., 1991, The isolation of receiver effects from teleseismic P waveforms, Bulletin of the Seismological Society of America, 81, 2504-2510.
  3. Ammon, C. J., 1992, A comparison of deconvoulution techniques, Technical Representative, Lawrence Livermore National laboratory.
  4. Ammon, C. J., Randall, G. E., and Zandt, G., 1990, On the Nonuniqueness of Receiver Function Inversions, Journal of Geophysical Research, 95, 15303-15318. https://doi.org/10.1029/JB095iB10p15303
  5. Bannister, S., Bryan, C. J., and Bibby, H. M., 2004, Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion, Geophys. J. Int., 159, 291-310. https://doi.org/10.1111/j.1365-246X.2004.02384.x
  6. Brenna, M., Cronin, S. J., Smith, I. E. M., Maas, R., and Sohn, Y.K., 2012, How small-volume basaltic magmatic systems develop: a case study from the Jeju Island Volcanic Field, Korea. Journal of Petrology, 53, 985-1018. https://doi.org/10.1093/petrology/egs007
  7. Burdick, L. J., and Langston, C. A., 1977, Modeling crust-structure through the use of converted phases in teleseismic body-waveforms, Bulletin of the Seismological Society of America, 67, 677-691.
  8. Chang, S. J., and Baag, C. E., 2005, Crustal Structure in Southern Korea from Joint Analysis of Teleseismic Receiver Functions and Surface-Wave Dispersion, Bulletin of the Seismological Society of America, 95(4), 1516-1534. https://doi.org/10.1785/0120040080
  9. Chang, S. J., and Baag, C. E., 2007, Moho depth and crustal $V_P/V_S$ variation in Southern Korea from teleseimic receiver functions, Bulletin of the Seismological Society of America, 97, 1621-1631. https://doi.org/10.1785/0120050264
  10. Chang, S. J., Baag, C. E., and Langston, C. A., 2004, Joint analysis of teleseismic receiver function and surface wave dispersion using the genetic algorithm, Bulletin of the Seismological Society of America, 94, 691-704. https://doi.org/10.1785/0120030110
  11. Cho, H. M., Baag, C. E., Lee, J. M., Moon, W. M., Jung, H., Kim, K. Y., and Asudeh, I., 2006, Crustal velocity structure across the southern Korea Peninsula from seismic refraction survey, Geophysical Research Letters, 33, L06307, doi:10.1029/2005GL025145.
  12. Clayton, R. W., and Wiggins, R. A., 1976, Source shape estimation and deconvolution of teleseismic body waves, Geophysical Journal Royal Astronomical Society, 47, 151-177. https://doi.org/10.1111/j.1365-246X.1976.tb01267.x
  13. Duan, Y. H., Zhang, X. K., Kiu, Z., Yuan, Q. X., Xu, Z. F., Wang, F. Y., Fang, S. M., and Yang, Z. X., 2005, Study on structures of Changbaishan-Jingpohu volcanic area using receiver functions, Chinese Journal of Geophysics, 48(2), 389-396. https://doi.org/10.1002/cjg2.665
  14. Dziewonski, A. M., and Anderson, D. L., 1981, Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
  15. Fossen, H., 2010, Structural Geology. Cambridge University Press. Cambridge. 463.
  16. Gurrola, H., Minster, J. B., Given, H., Vernon, F., Berger, J., and Aster, R., 1990, Analysis of high-frequency seismic noise in the western united-states and eastern kazakhstan, Bulletin of the Seismological Society of America, 80, 951-970.
  17. Han, S. I., Lee, J. M., and Kang, T. S., 2010, 1D crustal velocity structure beneath broadband seismic stations in the Okcheon Fold Belt of Korea by receiver function analysis, Geosciences Journal, 14(1), 57-66. https://doi.org/10.1007/s12303-010-0007-3
  18. Hetland, E. A., Wu, F. T., and Song, J. L., 2004, Crustal structure in the Changbaishan volcanic area, China, determined by modeling receiver functions, Tectonophysics, 386, 157-175. https://doi.org/10.1016/j.tecto.2004.06.001
  19. Hong, M., and Kim, K. Y., 2010, H/V Spectral-ratio Analysis of Microtremors in Jeju Island, Geophysics and Geophysical Exploration, 13(2), 144-152.
  20. Jeon, T., Kim, K. Y., Park, Y., and Kang, I. B., 2012, S-wave Velocity Structure Beneath the KS31 Seismic Station in Wonju, Korea Using the Joint Inversion of Receiver Functions and Surface-wave Dispersion Curves and the H-${\kappa}$ Stacking Method, Geophysics and Geophysical Exploration, 15(1), 8-15. https://doi.org/10.7582/GGE.2012.15.1.008
  21. Jeon, Y. M., 2009, Lithofacies and emplacement processes of the volcanic rocks in the Cretaceous Gyeongsang basin and Quaternary Jeju Island, Korea, Ph.D. Thesis, Gyeongsang National University, 165p.
  22. Julia, J., and Mejia, J., 2004, Thickness and $V_P-V_S$ ratio variation in the Iberian crust, Geophysical Journal International, 156, 59-72. https://doi.org/10.1111/j.1365-246X.2004.02127.x
  23. Kgaswane, E., Nyblade, A. A., Julia, J., Dirks, P. H. G. M., Durrheim, R. J., and Pasyanos, M. E., 2009, Shear wave velocity structure of the lower crust in southern Africa: Evidence for compositional heterogeneity within Archean and Proterozoic terrains, Journal of Geophysical Research, 114, B12304, doi:10.1029/2008JB006217.
  24. KIGAM, 2000, Geological map (1:250,000) of the Jeju-Baekado-Jinnampo sheet, Korea Institute of Geology, Mining, and Materials.
  25. Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves, Bulletin of the Seismological Society of America, 72, 491-506.
  26. Kim, K. Y., and Hong, M. H., 2012, Shear-wave velocity structure of Jeju Island, Korea, Geosciences Journal, 16(1), 35-45. https://doi.org/10.1007/s12303-012-0004-9
  27. Koh, G., 1997, Characteristics of the groundwater and hydrogeologic implementations of the Seoguipo Formation in Cheju Island. Ph. D. Thesis, Pusan National University, Busan, 325p. (in Korean with English abstract)
  28. Koh, J. S., Yun, S. H., and Kang, S. S., 2003, Petrology of the Volcanic Rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island, Jour. Petrol. Soc. Korea, 12(1), 1-15.
  29. Kwon, B. D., Lee, H. S., Jung, G. G., and Chung, S. W., 1995, Investigation of Subsurface Structure of Cheju Island by Gravity and Magnetic Methods, Econ. Environ. Geol., 28(4), 395-404.
  30. Langston, C. A., 1979, Structure under Mount Rainier, Washington, inferred from teleseismic body waves, Journal of Geophysical Research, 84, B9.
  31. Lee, K., 2010, Comments on seismicity and crustal structure of the Korean peninsula, Geophysics and Geophysical Exploration, 13(3), 256-267.
  32. Lee, K., Jeong, B. I., Choi, K. S., and Lee, S. K., 1983, A study of gravity and geomagnetism of Jeju Island, Journal of the Geological Society of Korea, 19, 1-10.
  33. Lee, M. W., 1982, Petrology and geochemistry of Jeju volcanic Island, Korea. Sci. Rep. Tohoku Univ., Series 3(15), 177-256.
  34. Ligorria, J. P., and Ammon, C. J., 1999, Iterative deconvolution and receiver-function estimation, Bulletin of the Seismological Society of America, 89, 1395-1400.
  35. Lowrie, W., 1997, Fundamentals of Geophysics, Cambridge University Press, Cambridge.
  36. Mohsen, A., 2004, A receiver function study of the crust and upper mantle across the Dead Sea transform, Ph. D. thesis, The Free University of Berlin, Berlin, 119p.
  37. Oh, J., Yi, S., Yoon, S., Koh, G. W., Yun, H., and Lee, J., D., 2000, Subsurface stratigraphy of Jeju Island, Journal of Geol. Soc. Korea, 36(3), 181-194.
  38. Owens, T. J., Zandt, G., and Taylor, S. R., 1984, Seismic Evidence for an ancient rift beneath the Cumberland plateau, Tennessee, Journal of Geophysical Research, 89, 7783-7795. https://doi.org/10.1029/JB089iB09p07783
  39. Ozalaybey, S., Savage, M. K., Sheehan, A. F., Louie, J. N., and Brune, J. N., 1997, Shear-wave velocity structure in the northern Basin and Range Province from the combined analysis of receiver functions and surface waves, Bull. Seis. Soc. Amer., 87(1), 183-199.
  40. Park, S. J., Lee, J. M., Ryu, I.-C., and Ryu, I. C., 2009, 1D velocity structure beneath broadband seismic stations in the Cretaceous Gyeongsang Basin of Korea by receiver function analysis, Tectonophysics, 472, 158-168. https://doi.org/10.1016/j.tecto.2008.05.032
  41. Park, Y. K., 2010, Crustal and upper mantle structure in and around the Korean Peninsula by teleseismic receiver functions and surface wave analyses, Ph. D. Thesis, Chonnam National University, Gwangju, 88p. (in Korean with English abstract)
  42. Phinney, R. A., 1964, Structure of the Earth's crust from spectral behaviour of long period body waves, Journal of Geophysical Research, 69, 2997-3107. https://doi.org/10.1029/JZ069i014p02997
  43. Shin, J. S., Sheen, D.-H., and Shin, I. C., 2009, Orientation correction for borehole seismic stations in South Korea, Journal of Geol. Soc. Korea, 45(1), 47-54.
  44. Tuluka, G. M., 2010, Crustal structure beneath two seismic broadband stations revealed from teleseismic P-wave receiver function analysis in the Virunga volcanic area, Wesr Rift Valley of Africa, Journal of African Earth Sciences, 58, 820-828. https://doi.org/10.1016/j.jafrearsci.2009.11.003
  45. Vinnik, L. P., and Kosarev, G. L., 1981, Determination of crustal parameters from observations of teleseismic body waves, Proceedings Academy of Sciences of the USSR, 261, 1091-1095.
  46. Wilson, C. K., Jones, C. H., and Gilbert, H. J., 2003, Single-chamber silicic magma system infered from shear wave discontinuities of the crust and uppermost mantle, Coso geothermal area, California, Journal of Geophysical Research, 108(B5), 2226, doi: 10.1029/2002JB001798.
  47. Wolfe, C. J., Solomon, S. C., Laske, G., Collins, J. A., Detrick, R. S., Orcutt, J. A., Bercovici, D., and Hauri, E. H., 2009, Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science, 326(5958), 1388-1390. https://doi.org/10.1126/science.1180165
  48. Yoo, H. J., Herrmann, R. B., Cho, K. H., and Lee, K., 2007, Imaging the three-dimensional crust of the Korean Peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions, Bulletin of the Seismological Society of America, 97, 1002-1011. https://doi.org/10.1785/0120060134
  49. Yoon, S., Hyun, W. H., and Jung, C. Y., 2005, Geology of Hallasan (Mt. Halla), Jeju Island, Journal of Geol. Soc. Korea, 41(4), 481-497.
  50. Zandt, G., and Ammon, C. J., 1995, Continental crust composition constrained by measurements of crustal Poisson's ratio, Letters to Nature, 152-154.
  51. Zhu, L., and Kanamori, H., 2000, Moho depth variation in southern California from teleseismic receiver functions, Journal of Geophysical Research, 105, 2969-2980. https://doi.org/10.1029/1999JB900322

Cited by

  1. Shear Wave Velocity Structure Beneath White Island Volcano, New Zealand, from Receiver Function Inversion and H-κ Stacking Methods vol.17, pp.2, 2014, https://doi.org/10.7582/GGE.2014.17.2.066