DOI QR코드

DOI QR Code

Removal Characteristics of Mixed Heavy Metals from Aqueous Solution by Recycled Aggregate as Construction Waste

건설폐기물인 순환골재를 이용한 수용액상에서의 혼합 중금속 제거 특성

  • Shin, Woo-Seok (Institute of Marine Science and Technology Research, Hankyong National University) ;
  • Kim, Young-Kee (Institute of Marine Science and Technology Research, Hankyong National University)
  • 신우석 (국립한경대학교 해양과학기술연구센터) ;
  • 김영기 (국립한경대학교 해양과학기술연구센터)
  • Received : 2013.03.14
  • Accepted : 2013.05.06
  • Published : 2013.05.25

Abstract

This study examined the removal rate of mixed heavy metals from aqueous solution using recycled aggregate. The recycled aggregate is favorable for the absorbent because it contains about 95% (CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$), which are major ingredient of adsorbent for heavy metal. The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and showed the affinity order: $Cu^{2+}$ > $Pb^{2+}$ > $$Zn^{2+}{\simeq_-}Ni^{2+}$$ > $Cd^{2+}$. The results also showed that adsorption rate slightly increased with increasing pH from 6 to 10. Moreover, this trend is similar to results obtained as function of loading amount of recycled aggregate. Meanwhile, an unit adsorption rate was slightly decreased. From these results, it was concluded that the absorbents can be successfully used the removal of the heavy metals from the aqueous solutions.

본 연구에서는 순환골재를 이용하여 수용액상에서 혼합중금속의 제거능을 평가하였다. 순환골재는 주요 성분인 CaO, $SiO_2$, $Al_2O_3$, $Fe_2O_3$가 약 95% 함유되어 흡착제로서 유리한 조성을 가지고 있다. 동적흡착결과를 유사 1차 모델과 유사 2차 모델로 분석한 결과 두 모델 모두 실험결과에 잘 부합하는 것으로 나타났다. 평형흡착 실험은 Langmuir 모델에 잘 부합했고, $Cu^{2+}$ > $Pb^{2+}$ > $$Zn^{2+}{\simeq_-}Ni^{2+}$$ > $Cd^{2+}$순으로 흡착량이 높았다. 용액의 pH가 6에서 10로 증가함에 따라서 흡착률은 증가하는 것으로 나타났다. 또한, 순환골재의 양이 증가함에 따라서 중금속의 흡착률은 증가하였지만, 단위 질량당 흡착량은 감소하였다. 본 연구 결과를 통해 순환골재는 중금속을 효율적으로 제거할 수 있는 흡착제로 판단된다.

Keywords

References

  1. USEPA, 2005, Contaminated sediment remediation guidance for hazardous waste sites.
  2. Kim, K.I., Choi, J.S., Im, H.G., 2006, "Reforming resource circulation policy for sustainable material management, Korea Environment Institute.
  3. Ryou, J.S., Song, I.H., 2011, "An experimental study on field application of self-compacting concrete using recycled fine aggregate", Journal of the Korea institute for structural maintenance inspection, Vol. 10, 55-60. https://doi.org/10.11112/jksmi.2011.15.4.193
  4. Kim, E.H., Kim, J.K., Sung, N.C., 1997, "A study on removal of heavy metals and pH increasing effects in plating wastewater using oyster shells", Korea Society of Waste Management, Vol. 34, 414-419.
  5. Kim, J.B., Oh, J.I., Park, C.S., 2002, "AMD (Acid Mine Drainage) neutralization using recycled-concrete aggregates", J. KSEE, Vol. 24, 21-30.
  6. Lee, H.S., Oh, Y.S., Lee, W.C., 2004, "A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst", J. Kor. Inst. Res. Recycling, Vol. 13, 3-8.
  7. Ahmaruzzaman, M., 2011, "Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals", Adv. Colloid Interface Sci., Vol. 166, 36-59.
  8. American Water Works Association, 1999, "water quality & treatment hand book", McGraw-Hill.
  9. Allahverdi, A., Kani, E.N., 2009, "Construction wastes as raw materials for Geopolymer binders", International J. Civil Engin., Vol. 7, 154-160.
  10. Chen, G.Z., Fray, D.J., 2001, "Cathodic refining in molten salts: Removal of oxygen, sulfur and selenium from static and flowing molten copper", J. Appl. Electrochem., Vol. 31, 155-164. https://doi.org/10.1023/A:1004175605236
  11. Clayden, N.J., Esposito, S., Aronne, A., Pernice, P., 1991, "Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses", J. Non-Cryst. Solids, Vol. 11, 258-268.
  12. Gray, C.W., Dunhan, S.J., Dennis, P.G., Zhao, F.J., McGrath, S.P., 2006, "Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red mud", Environ. Pollut., Vol. 142, 530-539. https://doi.org/10.1016/j.envpol.2005.10.017
  13. Ho, Y.S., McKay, G., 1999a, "Thesorption of lead(II) ions on peat", Water Res., Vol. 33, 578-584. https://doi.org/10.1016/S0043-1354(98)00207-3
  14. Ho, Y.S., McKay, G., 1999b, "Pseudo-second order model for sorption processes", Proc. Biochem., Vol. 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  15. Hui, K.S., Chao, C.Y.H., Kot, S.C., 2005, "removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash", J. Hazard. Mater., Vol. B127, 89-101.
  16. Liu, Y., Naidu, R., Ming, H., 2011, "Red mud as an amendment for pollutants in solid and liquid phases", Geoderma., Vol. 163, 1-12. https://doi.org/10.1016/j.geoderma.2011.04.002
  17. Mollah, M.Y.A., Lu, F., Cocke, D.L., 1998, "An X-ray diffraction (XRD) and fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic (V) in Portland cement type-V", Sci. total Environ., Vol. 57, 224-231.
  18. Ortego, J.D., Barroeta, Y., 1991, "Leaching effects on silicate polymerization, A FTIR and 29Si NMR study of lead and zinc in Portland cement", Environ. Sci. Technol., Vol. 25, 1171-1174. https://doi.org/10.1021/es00018a024
  19. Palmer S.J., Nothling, M., Bakon, K., Frost, R., 2010, "Thermally activated seawater neutralised red mud used for the removal of arsenate, vanadate and molybdate from aqueous solution", J. colloid Interface Sci., Vol. 342, 147-154. https://doi.org/10.1016/j.jcis.2009.10.010
  20. Quy, T. N., Bruce, A. M., 2001, "Lead adsorption and precipitation reactions on soil minerals", Symposia papers presented before the division of Environmental Chemistry American Chemical Society, Vol. 41, 609-613.
  21. Smiljani , S., smiciklas, I., Peri -Gruji , A., Lon ar, B., Mitric, M., 2010, "Rinsed and thermally treated red mud sorbents for aqueous $Ni^{2+}$ ions", chem. Eng. J., Vol. 162, 75-83. https://doi.org/10.1016/j.cej.2010.04.062
  22. Srivastava, P., Singh, B., Angove, M., 2005, "Competitiveadsorption behavior of heavy metals on kaolinite", J. ColloidInterface Sci., Vol. 290, 28-38. https://doi.org/10.1016/j.jcis.2005.04.036
  23. Weng, C.H., Huang, C.P., 1994, "Treatment of metal industrial waste water by fly ash and cement fixation", J. Environ. Eng., Vol. 120, 1470-1487. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1470)
  24. Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F., Cong, X., 1999, "Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy", J. Am. Ceram. Soc., Vol. 82, 742- 750.
  25. Hyodo, M., Kuwabara, T., Sato, S., Nonaka, T., 2008, "Recycling of fine demolished concrete as functional overlying sand", Trans. The Japanese Society of Irrigation, Drainage and Rural Engineering (JSIDRE), Vol. 257, 19-25.

Cited by

  1. Stabilization of mixed heavy metals in contaminated marine sediment using steel slag vol.38, pp.3, 2014, https://doi.org/10.5394/KINPR.2014.38.3.269
  2. Removal Characteristics of Heavy Metals from Aqueous Solution by Recycled Aggregate and Recycled Aggregate/Steel Slag Composites as Industrial Byproducts vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1059
  3. Assesment of Zeolite, Montmorillonite, and Steel Slag for Interrupting Heavy Metals Release from Contaminated Marine Sediments for Capping Thickness of Reactive materials vol.39, pp.4, 2015, https://doi.org/10.5394/KINPR.2015.39.4.335
  4. Application of Limestone, Zeolite, and Crushed Concrete as Capping Material for Interrupting Heavy Metal Release from Marine Sediments and Reducing Sediment Oxygen Demand vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.031
  5. Natural Zeolite and Sand Capping Treatment for Interrupting the Release of Cd, Cr, Cu, and Zn from Marine Contaminated Sediment and Stabilizing the Heavy Metals vol.38, pp.3, 2016, https://doi.org/10.4491/KSEE.2016.38.3.135
  6. Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments vol.58, pp.2, 2016, https://doi.org/10.5389/KSAE.2016.58.2.001
  7. Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients vol.39, pp.8, 2017, https://doi.org/10.4491/KSEE.2017.39.8.470