DOI QR코드

DOI QR Code

The Effect of Uncertainty in Roughness and Discharge on Flood Inundation Mapping

조도계수와 유량의 불확실성이 홍수범람도 구축에 미치는 영향

  • 정영훈 (인하대학교 수자원시스템연구소) ;
  • 여규동 (인하대학교 수자원시스템연구소) ;
  • 김수영 (홍익대학교 토목공학과) ;
  • 이승오 (홍익대학교 토목공학과)
  • Received : 2012.10.15
  • Accepted : 2013.03.04
  • Published : 2013.05.30

Abstract

The accuracy of flood inundation maps is determined by the uncertainty propagated from all variables involved in the overall process including input data, model parameters and modeling approaches. This study investigated the uncertainty arising from key variables (flow condition and Manning's n) among model variables in flood inundation mapping for the Missouri River near Boonville, Missouri, USA. Methodology of this study involves the generalized likelihood uncertainty estimation (GLUE) to quantify the uncertainty bounds of flood inundation area. Uncertainty bounds in the GLUE procedure are evaluated by selecting two likelihood functions, which is two statistic (inverse of sum of squared error (1/SAE) and inverse of sum of absolute error (1/SSE)) based on an observed water surface elevation and simulated water surface elevations. The results from GLUE show that likelihood measure based on 1/SSE is more sensitive on observation than likelihood measure based on 1/SAE, and that the uncertainty propagated from two variables produces an uncertainty bound of about 2% in the inundation area compared to observed inundation. Based on the results obtained form this study, it is expected that this study will be useful to identify the characteristic of flood.

홍수범람도의 정확성은 입력자료, 모형변수, 모델접근방법 등을 포함한 전반적인 구축과정에 포함된 모든 변수들로부터 전달되는 불확실성에 의해 결정된다. 본 연구의 목적은 미국 Missouri주 Boonville시에 위치한 Missouri 강에 대한 홍수범람도 구축과정에서 모델 변수들 가운데 주 요소 (흐름조건, 조도계수)로부터 발생하는 불확실성을 조사하는 것이다. 본 연구를 수행하기 위하여 홍수범람면적의 불확실성 구간을 정량화하기 위한 GLUE (generalized likelihood uncertainty estimation)를 이용하였다. GLUE 수행과정에서 불확실성 구간은 두 개의 우도함수를 선택함으로 산정되었는데 선택된 우도함수는 제곱오차 합의 역 (1/SSE)과 절대오차 합의 역 (1/SAE)이다. GLUE의 결과는 제곱오차 합의 역에 의한 우도측정이 절대오차 합의 역에 의한 우도측정보다 관측 자료에 더 민감하였고, 두 개의 변수에 포함된 불확실성은 관측 자료의 약 2 %에 해당하는 홍수범람면적의 불확실성 구간에 전달되었다. 이러한 결과를 토대로, 본 연구는 홍수의 특성을 알아내는데 중요한 역할을 할 것으로 기대된다.

Keywords

References

  1. Aronica, G., Bates, P. D., and Horritt, M. S. (2002). "Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE." Hydrological Processes, Vol. 16, pp. 2001-2016. https://doi.org/10.1002/hyp.398
  2. Beven, K. J., and Binley, A. M. (1992). "The future of distributed models: Model Calibration and Uncertainty Prediction." Hydrol. Process., Vol. 6, pp. 279-298. https://doi.org/10.1002/hyp.3360060305
  3. Blasone, R. S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and Zyvoloski, G. A. (2008). "Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling." Adv. Water Resour., Vol. 31, No. 4, pp. 630-648. https://doi.org/10.1016/j.advwatres.2007.12.003
  4. Dawdy, D. R., Lichty, R. W. and Bergmann, J. M. (1972). A rainfall ‐.runoff simulation model for estimation of flood peaks from small drainage basis, U.S. Geol. Surv. Prof. Pap., 506-.B.
  5. Hornberger, G. M., and Cosby, B. J. (1985). "Selection of parameter values in environmental models using sparse data: A Case Study." Applied Math. and Comp., Vol. 17, pp. 335-355. https://doi.org/10.1016/0096-3003(85)90040-2
  6. Horritt, M. S. (2006). "A methodology for the validation of uncertain flood inundation models." Journal of Hydrology, Vol. 326, pp. 153-165. https://doi.org/10.1016/j.jhydrol.2005.10.027
  7. Hossain, F., Anagnostou, E. N., Dinku, T., and Borga, M. (2004). "Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty." Hydrol. Processes, Vol. 18, No. 17, pp. 3277-3291. https://doi.org/10.1002/hyp.5659
  8. Hydrologic Engineering Center (1998). HEC-RAS, Hydraulic Reference Manual. Davis: California.
  9. Koivumäki, L., Alho, P., Lotsari, E., Käyhkö, J., Saari, A., and Hyyppä, H. (2010). "Uncertainties in flood risk mapping: A Case Study on Estimating Building Damages for a River Flood in Finland." J. Flood Risk Manage., Vol. 3, No. 2, pp. 166-183 https://doi.org/10.1111/j.1753-318X.2010.01064.x
  10. Krzysztofowicz, R. (1999). "Bayesian theory of probabilistic forecasting via deterministic hydrologic model." Water Resources Research, Vol. 35, No. 9, pp. 2739-2750. https://doi.org/10.1029/1999WR900099
  11. Maskey, S., Guinot, V. and Price, R. K. (2004). "Treatment of precipitation uncertainty in rainfall-runoff modelling: A Fuzzy Set Approach." Advances in Water Resources, Vol. 27, No. 9, pp. 889-898 https://doi.org/10.1016/j.advwatres.2004.07.001
  12. Mason, D. C., Bates, P. D., and Dall' Amico, J. T. (2009). "Calibration of uncertain flood inundation models using remotely sensed water levels." Journal of Hydrology, Vol. 368, pp. 224-236. https://doi.org/10.1016/j.jhydrol.2009.02.034
  13. Merwade, V., Olivera, F., Arabi, M., and Edleman, S. (2008). "Uncertainty in flood inundation mapping-current issues and future directions." J. Hydrol. Eng., Vol. 13, No. 7, pp. 608-620. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608)
  14. Merz, R., and Blöschl, G. (2008a). "Flood frequency hydrology: 1. Temporal, Spatial, and Causal Expansion of Information." Water Resour. Res., Vol. 44, W08432, doi:10.1029/2007WR006744.
  15. Merz, R., and Blöschl, G. (2008b). "Flood frequency hydrology: 2. Combining Data Evidence." Water Resour. Res., Vol. 44, W08433, doi:10.1029/2007 WR006745.
  16. Moore, M. R. (2011). Development of a high-resolution 1D/2D coupled flood simulation of Charles City, Master's thesis, University of Iowa.
  17. Morin, E., Grodek, T., and Dahan, O. (2009). "Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia." J. Hydrol., Vol. 368, pp. 262-275. https://doi.org/10.1016/j.jhydrol.2009.02.015
  18. Paul D. Bates., Stuart N. Lane., Robert I. Ferguson. (2005). Computational fluid dynamics applications in environmental hydraulics, Wiley, USA, pp. 329-355.
  19. Pappenberger, F., Beven, K., Horritt, M., and Blazkova, S. (2005). "Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations." Journal of Hydrology, Vol. 302, No. 1-4, pp. 46-69. https://doi.org/10.1016/j.jhydrol.2004.06.036
  20. Pappenberger, F., Beven, K. J., Frodsham, K., Romanovicz, R., Matgen, P. (2006). "Grasping the unavoidable subjectivity in calibration of flood inundation models: A Vulnerability Weighted Approach." J. Hydrol. Vol. 333, pp. 275-287.
  21. Weichel, T., Pappenberger, F., and Schulz, K. (2007). "Sensitivity and uncertainty in flood inundation modelling - Concept of an analysis framework." Adv. Geosci., Vol. 11, pp. 31-36. https://doi.org/10.5194/adgeo-11-31-2007
  22. Werner, M. (2004). Spatial flood extent modelling: A Performancebased Comparison, Ph.D Thesis. Delft University of Technology, Netherlands.

Cited by

  1. Two-Dimensional Flood Inundation Analysis Resulting from Irrigation Reservoir Failure - Focused on the Real Case with the Minimal Data Set - vol.36, pp.2, 2016, https://doi.org/10.12652/Ksce.2016.36.2.0231
  2. Comparison and Evaluation of the Inundation Areas by Levee Breaching using LISFLOOD vol.16, pp.3, 2014, https://doi.org/10.17663/JWR.2014.16.3.383
  3. Uncertainty Quantification Index of SWMM Model Parameters vol.48, pp.2, 2015, https://doi.org/10.3741/JKWRA.2015.48.2.105
  4. Key Parameters and Input Variables for the Reduction of Uncertainty using Modified Pedigree Matrix vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.329